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Executive Summary 

This document outlines the activities conducted within Work Package (WP) 4, which focuses on utilizing 

Earth Observations (EOs) techniques for wildfire preparedness and prevention. Additionally, it highlights 

the technology developed under the SILVANUS project to combat forest fires in the eventuality they occur. 

Each task is detailed with descriptions of the technology developed, scientific outcomes, and results 

achieved by the respective partners. The sections pertaining to the tasks within WP4 are organized into 

four sub-sections: Tool Description, Innovation and Updates, Scientific Results and Drawbacks, and 

Demonstration Report. The Tool Description section provides a comprehensive overview of the tools and 

technologies developed for each task. In the Innovation and Updates section, we delve deeper into the 

scientific background and specifics of the technologies employed and developed to achieve each task. This 

section also highlights both the current state-of-the-art advancements in the technology and innovations 

that exceed existing standards. The Scientific Results and Drawbacks section summarizes the scientific 

findings from previous tasks while addressing any known limitations associated with each. Since scientific 

innovation is central to all activities within SILVANUS, it is crucial to highlight the current state-of-the-art 

for each task, citing relevant articles and resources, as well as detailing accomplishments that extend 

beyond this standard. This section also ensures coherence by discussing any shortcomings of the solutions 

developed. The Demonstration Report concludes with an overview of demonstrations of the technologies 

and tools developed during each task, including pilot exercises conducted in previous reporting periods. 

The conclusion of this deliverable summarizes the activities and achievements presented in D4.5. It also 

clarifies how the various tasks within WP4 interconnect to form a cohesive, integrated approach to forest 

fire prevention, detection, and response coordination.  
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1 Introduction 

Wildfires pose a significant threat to both ecosystems and human settlements, with the frequency and 
intensity of these destructive events increasing in recent years. This surge in wildfires has led to substantial 
economic losses and widespread social disruption. Driven by factors such as intensified human activities 
and the escalating impacts of climate change, the risk of wildfires is expected to grow in the coming years. 
Fortunately, as the threat has increased, so do the advancements in technology, offering new possibilities 
to address and mitigate these threats. 

This document outlines the innovative technologies developed within the SILVANUS framework, which aims 

to redefine the state-of-the-art in wildfire detection and countermeasures. In particular, D4.5 aims at 

providing the most updated overview of the capabilities and tools developed in SILVANUS up to M36. 

Historically, fire indices, such as the Canadian Fire Weather Index (FWI), were widely used in fire 

management as key tools to estimate the risk of wildfire occurrence. They help in understanding fire 

behaviour and are critical for decision-making in both wildfire detection and response. However, the FWI 

only relies on weather variables, such as temperature, humidity, wind speed, and precipitation, which does 

not fully account for the complex stochastic nature of wildfires. For instance, it is well understood that, in 

addition to weather, there is a strong connection among wildfires occurrence and anthropogenic activities, 

local geography, as well as vegetation. For this reason, in the context of the SILVANUS framework, a cutting-

edge data-driven Fire Danger Index (FDI) has been developed and deployed in WP5 to account for the 

underlying complex, potentially non-linear, relationship among variables under play.  

To support the collection, pre-processing and consumption of a large set of variables to serve as input to 

the data-driven FDI, WP4 provides capabilities and tools to gather variables from heterogeneous data 

sources (e.g., EOs and weather forecasts), harmonize and store them. In particular, Section 2 provides an 

overview of EO repositories, as well as the transformations performed to aggregate and process the 

selected variables to be used as input predictors for the data-driven approach. In Section 3 the technical 

details and setup of operational numerical weather models over different pilot sites are described. 

The Euro-Mediterranean Center on Climate Change’s (CMCC) Data Delivery System (DDS), deployed in the 

CMCC facilities, is employed to gather the EOs and weather forecast data and process them to serve the 

data-driven FDI. The technical details of the processing functions supported, as well as aggregation and 

harmonization are described throughout Section 2 and Section 3. Despite the DDS serves the wider weather 

and climate research community, yet it is fully integrated with the SILVANUS Storage Abstraction Layer 

(SAL) to address the specific goals of the project, especially related to the Machine Learning (ML)-based FDI 

estimation that makes up the phase A of the project (prevention and preparedness). 

In addition, WP4 provides enhanced tools and capabilities that cover both phases A and B (fire detection 

and response coordination). Specifically, Section 4 highlights the Internet of Things (IoT) devices developed 

for two key User Products, UP4a and UP9b. The former focuses on detecting fire and smoke, employing ML, 

whereas the latter is designed to assess air quality, similarly relying on ML to interpret environmental data 

and provide real-time insights on hazardous conditions. Additionally, Edge Micro-Data Centers (EMDCs), 

UP4b, play a crucial role in gathering and processing images and videos to identify fire events. On the 

response side, Forward Command Centers (FCCs), UP10, are used to aid commanders with key operational 

services. 
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In addition to the previously mentioned tools, the SILVANUS project leverages the widespread use of social 

media platforms such as X (formerly Twitter) and Facebook to enhance wildfire monitoring and response 

capabilities. Section 5 introduces a powerful Social Media Sensing framework, a robust system specifically 

designed to collect, analyze, and process social media posts related to fire incidents. This framework plays 

a crucial role in supporting stakeholders, such as emergency responders, fire management teams, and 

government authorities, by providing timely and relevant information during a fire event. By continuously 

monitoring social media platforms, it gathers real-time data from posts, photos, and user reports that 

mention or show fire-related activities. 

The SILVANUS project not only relies on advanced detection tools and in-situ monitoring devices, but also 

integrates unmanned vehicles, which play a pivotal role in field operations for real-time fire detection and 

surveillance. Both Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs), as detailed in 

Section 6 and Section 7, respectively, are critical components of this system, providing unique capabilities 

for wildfire management. Improvements in UGVs focused on the multi-robot navigation system with 

automatic map merging and place recognition. Additionally, the system added mobile manipulation, 

allowing a to collect ground-level data. Regarding UAVs, a toolbox for optimizing flight plans has been 

developed. It allows generating optimal sweeping trajectories based on several sensing parameters, such 

as camera shooting angle, as well as flight parameters like altitude and turning radius. 

Beyond describing all the technical details of the tools and the improvements performed in the last 

reporting period, D4.5 also describes the scientific results and drawbacks to point out potentiality and 

limitation of the proposed solutions, as well as future improvements. Moreover, for each developed tool 

the D4.5 provides a dedicated section to demonstrate the outcomes of each tool in different pilot sites, as 

further outlined in WP9.  
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2 Data collection, aggregation and pre-processing of EO datasets 

2.1 Tool description 

The EO tool developed in SILVANUS enables the collection, aggregation, and pre-processing of remotely 
sensed data, serving as key predictors for the data-driven FDI developed in WP5. By processing various EO 
variables, actionable intelligence is generated to monitor and assess the dynamic natural and human-made 
environment. 

Within the SILVANUS project, EO plays a pivotal role in the prevention, mitigation, and management of 
wildfire risks. This data-driven approach relies on EO observations to evaluate wildfire occurrences, offering 
critical insights into fire-prone areas. 

This section describes the tools developed to support the collection, aggregation, and pre-processing of the 
EOs. It also details how these variables are sourced from repositories, stored, and utilized to fulfill the 
project's objectives, particularly those outlined in T5.1 of WP5. Furthermore, an overview of the EOs that 
support SILVANUS applications is also provided. 

The following sections describes the datasets, processing steps and tools used to develop functionalities 

aimed at supporting the advanced detection capabilities, such as the estimation of FDI within SILVANUS. 

2.1.1 The CMCC DDS 

For the purpose of data-driven FDI (WP5), the DDS [1] serves as the primary tools for the ingestion and 

consummation of the EOs from the parent repositories. The DDS disseminates scientific dataset produced 

by CMCC Research Divisions and other external data providers which are of interest to activities carried out 

by the CMCC research divisions. DDS relies on a cloud-native microservices-based architecture that has 

been deployed — using Kubernetes. The core of the DDS is geokube [2]; it is a Python developed with the 

aim to improve the User Experience (UX) as well as for the analysis and visualisation of climate and earth 

science data. It provides high-level abstractions in terms of both Data Model (inspired by Climate Forecast 

and Unidata Common Data Models) and Application Programming Interface. 

The DDS is deployed and managed on the CMCC facilities, and it has been integrated with the SAL for the 

purpose of the SILVANUS project. 

2.2 Innovations and updates 

2.2.1 Ingestion of EO and ancillary data in the DDS 

Variables coming from EO repositories and additional ancillary datasets serve as predictors for estimating 

the FDI (WP5). As can be seen in Table 1 and Table 2, most of the variables are already ingested into the 

DDS (see the Parent repository column) and ready to be gathered and processed, whereas others are not. 

This is the case of land surface temperature (daytime and nighttime) and soil moisture index. For these 

variables the DDS uses a Prefect [3] pipeline to automatically synchronize every day with these repositories 

and ingest the newest data available on the data holder's repository. Each Prefect Task uses appropriate 

APIs to interact with the specific service, including authentication, search for new data, select the 

geographical domain of interest, formulate the request and download data in Network Common Data Form 

(NetCDF) format. Once data is downloaded, the DDS performs indexing and caching of metadata so that it 

becomes accessible to users. Contrary, Worldpop indicators, such as world population and road and 

waterway distance are static and were downloaded once and ingested manually into the DDS. 
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2.2.2 Consuming data from DDS 

The pipeline for consuming data (i.e. gathering and processing), previously ingested in the DDS, follows a 

specific template. Data supported by DDS are listed in Table 1 and Table 2. The pipeline is highly 

configurable as it uses Tom’s Obvious Minimum Language (TOML) configuration files to define the variables 

to be gathered and how they should be processed. This flexibility allows the same variable to be processed 

differently, specifying the appropriate processing function(s) to be applied as needed. By default, and in the 

context of supporting the estimation of the data-driven FDI in WP5, the pipeline retrieves 10 days in the 

past starting from the day in which the FDI should be estimated. Indeed, the temporal correlation between 

the dynamic fire predictors is also an important ingredient along with the spatial correlation around a given 

pixel. Regarding the spatial dimension, for each point in space (pixel/grid point) we collect the 25 x 25 points 

around it to account for spatial characteristics of the predictors. In Figure 1 we show screenshot from the 

Tom’s Obvious Minimum Language (TOML) file for consuming NDVI data from DDS. 

 

Figure 1. TOML configuration snapshot for consuming NDVI data from DDS. 

In the gathering section (Figure 1) all the parameters related to retrieving a variable from the DDS are 

defined. In the gathering section a variable can also be configured to be retrieved from a locally stored file. 

The processing section instead defines the set of functions that must be performed on each variable so that 

it can serve as an input to the ML model used in WP5 for estimating the FDI. These functions are listed, and 

the transformations are performed in a “first in, first out” (FIFO) manner. The transformations are 

implemented as Python functions, and the arguments (i.e., kwargs) for each Python function are provided 

in a list as string representations of dictionaries corresponding to each transformation at the same index. 

2.2.3 Overview and description of EO datasets 

Among different EOs repositories that have been identified in T4.1, we considered a set of 5 EO-based 

variables that are likely to be related to wildfire occurrence. These variables are selected following the work 

of [4] and are used as predictors to provide a fully data-driven FDI, which is part of WP5 activities. The EO 

variables from which these predictors are derived, and their parent repository, are summarized in Table 1. 
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Table 1. List of ancillary variables consumed from the DDS for the FDI forecast. 

No. Variables Parent repository 

1 Normalized difference vegetation index (NDVI) DDS 

2 Land surface temperature in daytime NASA MODIS [5] 

3 Land surface temperature in nighttime NASA MODIS 

4 Soil moisture index European Drought Observatory [6] 

5 Corine Land Cover classes DDS 

 

The datasets mentioned in Table 1 are ingested from their parent repository, harmonized and saved in the 

DDS repository. The repository, furthermore, is automatically synced as the parent repository is updated. 

From the DDS, these variables are consumed, processed and utilized for the computation of the FDI. 

2.2.3.1 Normalized Difference Vegetation Index 

Normalized Difference Vegetation Index (NDVI) is an index which quantifies the health and diversity of 

vegetation. It is a widely used index for assessing the state of vegetation as it is highly correlated with the 

true state of vegetation. The theoretical basis of the NDVI measurement relies on the fact that live green 

plants appear bright in the near infrared (NIR) region (strongly reflecting this wavelength) of the 

electromagnetic spectrum. However, chlorophyll in plants strongly absorbs visible light for photosynthesis. 

The NDVI is therefore computed according to the following equation: 

𝑁𝐷𝑉𝐼  =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NDVI is constrained between -1 and 1. 

2.2.3.2 Land Surface Temperature 
Land Surface Temperature (LST) is the surface temperature of the Earth sourced by the solar radiation and 

measured by the radiation remitted by the Earth. LST contrasts with the temperature at 2 meters which 

represents the air temperature at 2-meter height from the surface of the Earth. 

2.2.3.3 Soil Moisture Index 
The Soil Moisture Index (SMI) is the proportion of the difference between the soil moisture present and the 

permanent wilting point of the vegetation to the field capacity and the residual soil moisture. For the case 

of fire danger prediction, it shows the state of drought as areas which have had drought are more prone to 

catch fires. The values of the soil moisture index ranges from 0 (maximum drought) to 1 (minimum drought).  

2.2.3.4 Corine Land Cover classes 

In 1985 the European Community initiated a programme called Corine under which the Corine Land Cover 

(CLC) project has the objective of mapping the use of European land to assist policy making among many 

other objectives. The essence of the CLC programme is to provide up-to-date information on land cover 

throughout Europe in a regular cycle and to show changes occurring between successive cycles (2018 being 

the latest cycle). The land cover is a gridded dataset at 100 m resolution and is divided into 44 classes. These 

classes are shown in Figure 2. 
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Figure 2. List of 44 CLC classes [7]. 

2.2.4 Ancillary variables 

In addition to the EO variables listed in Table 1, other ancillary variables are collected, pre-processed and 

ingested in the DDS. Table 2 list these variables with the corresponding parent repository. 

Table 2. List of ancillary variables consumed from the DDS for the FDI forecast. 

No. Variables Parent repository 

1 Digital Elevation Model DDS  

2 Road distance Worldpop [8] 

3  Waterway distance Worldpop [8] 

4 World population Worldpop [8] 

 

2.2.4.1 Digital Elevation Model (DEM) and Slope 
The digital elevation represents the state of the bare ground and its topography. From the DEM output the 

surface slope can be computed using the Geospatial Data Abstraction Library (GDAL) library. The slope is 

an important parameter in the FDI computation, as a steep slope is more prone to wildfires propagation 

than a shallower one. 
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2.2.4.2 Road distance 

Road distance dataset include the distance to major roads in the given region. The dataset is available in 

Geo Tag Image File Format (Geotiff) format at a resolution of 3 arc seconds (approximately 100m at the 

equator). The projection is Geographic Coordinate System 84 (WGS84). The values of the raster are the 

distance (in kilometres) from the cell centre to the nearest feature. 

2.2.4.3 Waterway distance 

Waterway distance dataset include the distance to major waterways in the given region. The dataset is 

available in Geotiff format at a resolution of 3 arc seconds (approximately 100m at the equator). The 

projection is WGS84, and the values of the raster are the distance (in kilometres) from the cell centre to the 

nearest feature. 

2.2.4.4 World population 

World population is the estimated total number of people per grid-cell. The dataset is available to download 

at a resolution of 30 arc seconds (approximately 1 km at the equator). The projection is WGS84, and the 

units are number of people per pixel. 

 

2.3 Scientific results and drawbacks 

2.3.1 Weaknesses of the data gathering pipeline 

The repositories which host the variables listed in Table 1 and Table 2 operate autonomously. Therefore, 
the availability of data for a given region cannot always be ensured, which is a potential drawback for 
applications which use these variables, such as the data-driven based FDI method over the traditional 
methods. This is especially important for dynamic variables which change within a year and year-by-year. 
The pipeline is equipped with strategies to partly circumvent this problem. In case a variable is not available 
in the DDS datastore, the pipeline can be instructed, defining the variable “contingency” for a variable in 
the TOML file, to either, 

• Retrieve the data for the latest date: In this case, the data for the latest available period in the 
datastore is used. This option works well for variables which do not change significantly over a short 
period of time, e.g. NDVI.  

• Retrieve the data for the same period in the previous year: In this case, the data from the previous 
year in the same period is used. In this case we assume that the statistical characteristics of the 
variables remain consistent across years. This option works well for variables which have cyclic 
variation, such as the LST and soil moisture index. 

Another limitation comes from the fact that not all satellite data are useful for wildfire nowcasting due to 
missing of significant variables like wind speed and air temperature which are crucial for predicting the 
speed of propagation. To address these gaps, it is necessary to integrate satellite data with the first few 
hours of forecast data from meteorological models, which provide the missing information and improve 
the accuracy of wildfire nowcasting estimates. 

2.4 Demonstration report 

In this section, we demonstrate how EO variables are processed to serve as input for the data-driven 

approach developed in T5.1. Indeed, these variables, together with those related to weather forecasts 

(described in Section 3), are the key components of UP2 which aims at delivering a fully data-driven model 

for estimating the FDI in different pilot sites, which act as demonstrators in WP9. We also show the results 

of the processing that can be applied on these variables in the pipeline that has been developed for T5.1. It 

is worthwhile to mention that the pipeline for preprocessing is customizable and therefore other kind of 

transformations can be applied to the variables.  
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2.4.1 Land surface temperature (LST) 

The variables LST is already described in Section 2.2.3.2. From the NASA MODIS [5] data repository we 

ingest two kinds of LST variables, i.e. LST daytime and LST nighttime. NASA provides these variables at the 

resolution of 1 km which must be remapped to the spatial resolution of weather variables of 2.2 km. To 

remap the variables, we use the NetCDF function interp_like [9] with the method argument set to nearest. 

The original LST variable and the remapped version are shown in Figure 3. 

  

 

(a) 

 

(b) 

Figure 3. Land surface temperature (a) daytime, (b) nighttime, (top) at 1km resolution (bottom) at 

downscaled to 2.2 km resolution. The missing values in the picture correspond to sea or areas covered by 

clouds. 

2.4.2 Soil Moisture Index 

The SMI is ingested into the DDS from the European Drought Observatory [6]. The frequency at which the 

SMI is updated is 10-daily, whereas the spatial resolution is of 5 km. In the Figure 4, the remapped SMI over 

the Apulia region is shown at 2.2 km resolution. 
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Figure 4. Soil Moisture Index (left) at 5km resolution (right) at downscaled to 2.2 km resolution. 

2.4.3 Corine Land Cover 

CLC has special use when it comes to the problem of prevention and assessment of the fire danger. The 

variable has already been described in detail in the Section 2.2.3.4. CLC is processed in a particular way 

allowing the extraction of summarized information from the original CLC classes in a way which serves the 

estimation of the FDI. 

The spatial resolution of the CLC dataset is 100 m, while the resolution of the weather variables is 2.2 km, 

meaning that there are 484, potentially different, CLC classes (each pixel is associated to one class). 

We start by grouping the 44 CLC classes (1 – 44) into 10 groups (0 – 9). It is important to note that the 

category for each CLC class is described in Figure 2. The 10 groups in which the 44 CLC classes a grouped is 

show in Table 3. 

Table 3. Grouping the native 44 CLC classes and the 10 groups. 

Mapped groups Native CLC Classes 

0 1,3,4,5,6,7,8,9,10,11 

1 2 

2 12,13,14 

3 15,16,17 

4 18 

5 19,20,21,22 

6 23,24,25 

7 26,27,28,29 

8 30,31,32,33,34 

9 35,36,37,38,39,40,41,42,43,44 
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Then, for each pixel on the 2.2 km resolution map, we compute the percentage of each one of the 10 classes 

in the group, therefore for each pixel the sum of the ratio over the 10 groups is 1. The original CLC map over 

the Apulia region of Italy (location of one of the SILVANUS pilot sites), and the 10 groups to which the CLC 

variable is remapped is shown in Figure 5. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

Figure 5. (a) The original CLC map consumed from DDS over the pilot region of Apulia. (b)-(k) shows the 10 

groups to which the original 44 classes are mapped. 

2.4.4 Digital Elevation Model 

The Digital Elevation Model (DEM) is originally consumed from the DDS at 10 m resolution which is further 

remapped to 2.2 km of spatial resolution. Both the maps, before and after the resolution are shown in 

Figure 6 (upper left and right, respectively). The Digital Elevation is also used to calculate the Slope of the 

topography which serves as an important variable in concerning the spread of fire. The slope computed 

from the remapped DEM is also shown in Figure 6 (bottom). 
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Figure 6. Digital elevation model data over the Apulia region. (top left) the original DEM at 10 m of spatial 

resolution, (top right) the remapped to 2.2 km and (bottom) the slope computed from the remapped 

DEM. 

2.4.5 WorldPop data 

As explained in Section 2.2.4.4, the data from WorldPop.org include variables concerning population 

density, road distance and waterway distance. These variables are remapped using the same technique 

described above for other variables. For completeness and demonstration, we show map of variables road 

distance and waterway distance in Figure 7 
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(a) 
(b) 

Figure 7. Road and waterway distance over the Apulia region. Panel (a) shows the original 100 m 

resolution of road (top) and waterway (bottom) distance, whereas panel (b) shows the same data 

remapped to the 2.2 km target resolution. 
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3 Weather/Climate data services for forest fire threat risk assessment 

3.1 Tools description 

3.1.1 Numerical models for weather nowcasting 

The short-term weather forecasts developed for estimating the threat risk of wildfires have been generated 
using the numerical Weather Research and Forecasting (WRF) model [10] version 4.2.1. This model was 
chosen over other Numerical Weather Prediction (NWP) models because it has previously demonstrated 
promising results, in other projects focusing on the Apulia region in Italy, one of the pilot sites for this 
project. 

The WRF model was developed in the late 1990s through a collaboration among various universities and 
research centers, including the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. 
WRF is a non-hydrostatic model that describes fully compressible atmospheric flow. Its flexible atmospheric 
circulation system allows it to operate across various spatial scales. The WRF configuration developed by 
CMCC at about 2km resolution (hereafter WRF_2km@CMCC) has been run over the pilot domains centred 
on the Apulia region which includes the Gargano promontory, over the north-eastern corner of Sardinia 
comprising the Tepilora Regional Natural Park, and finally on the Cova da Beira case study subregion, part 
of the Portuguese mainland. More details about the configuration of the forecast runs are listed in Section 
3.4. In the initial part of the project, which focused solely on the Apulia region, different forcings have been 
used to run the historical simulations to evaluate the model configuration performances: the Integrated 
Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the 
Global Forecasting System (GFS) of the National Centers for Environmental Prediction (NCEP). Results 
reported in Figure 8 demonstrated consistent performances over the investigated period (April-May 2019) 
between the simulations’ outputs driven by IFS and GFS analyses and two reference datasets: the gridded 
observational data E-OBS [11] at ~11 km resolution and the Fifth generation ECMWF reanalysis (ERA5) 
downscaling at ~2.2 km over Italy [12] [13]. Specifically, the skills of the numerical models were statistically 
assessed by computing the Probability Density Functions (PDFs) of the following variables: daily mean, 
minimum and maximum temperature, wind speed and precipitation. In general, the WRF_2km@CMCC can 
forecast nearly 200 variables at an hourly temporal frequency. 

Since comparable performances are achieved by both IFS- and GFS-driven simulations, GFS forecasts have 

been utilized for operational weather forecasting due to data availability Figure 9. 
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Figure 8. PDFs of daily (a) 2m Mean Temperature, (b) 2m Minimum Temperature, (c) 2m Maximum 

Temperature, (d) 10m Wind Speed and (e) Accumulated Precipitation for E-OBS (black), VHR (blue), 

WRF@CMCC forced by GFS analysis (red) and WRF@CMCC forced by IFS analysis (orange). These analyses 

are performed over the period April-May 2019. 

 

 

Figure 9. WRF_2km@CMCC weather forecasts operational scheme. 

3.1.2  Numerical model for seasonal forecasts 

For the seasonal time scales, probabilistic forecasts of FDIs are provided using ensemble seasonal forecasts 

produced by the Copernicus Climate Change Service (C3S) operational multi-model prediction system, for 

the model CMCC sps3.5 (Developed at CMCC, [14]). The System is based on a coupled Ocean-Atmosphere 

Global Climate Model, complemented by several additional modules. The System is operated monthly in 

Ensemble seasonal mode (6-month predictions) and is completed by a database of monthly ensemble 

hindcasts covering the period 1993-2016 which can be used to evaluate the performance of the System and 

to apply bias removal techniques from operational forecasts. There are 50 members in operational and 

preoperational prediction mode and 40 members in hindcast mode. The seasonal forecast models are 
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produced and provided globally but to cover all the pilot cases we have compute the seasonal FWI at the 

European domain. 

The variables of the seasonal forecast model CMCC sps3.5 are available at a horizontal resolution of 1° x 1°, 

at daily/sub-daily time resolution. The variables used to compute the FWI at seasonal time scales are:  

• Temperature at 2 meters level  

• Dew point Temperature at 2 meters  

• Total precipitation  

• 10m u-component of wind  

• 10m v-component of wind  

The variables used to compute the method of the subsampling of members at seasonal times scales are:  

• Sea surface temperature 

• Sea level pressure 

3.1.3 Ingestion of weather variables in the DDS 

Weather is one of the most important components on which the occurrence of wildfire depends. Indeed, 

weather has a significant role in the spread of fire, once a spark has started. 

Among the huge number of variables simulated by the WRF_2km@CMCC, which was described in the 

previous section, only a subset of those were ingested in the DDS. The list of the ingested variables is 

provided in Table 4, and they natively come at an hourly temporal resolution and in NetCDF format. 

Table 4. List of weather variables used for daily FDI forecast. The weather variables are stored and consumed 

from the DDS. 

No. Variables 

1 2-meter temperature 

2 U component of wind at 10-meter 

3 V component of wind at 10-meter 

4 Accumulated total grid scale precipitation 

5 Surface pressure 

6 Water vapor mixing ratios at 2-meter 

 

The WRF_2k@CMCC numerical model has been setup on the CMCC Supercomputing facilities, where also 

the DDS platform is deployed. Numerical model forecasts of weather variables, reported in Table 4, are 

stored in different directories, one for each pilot site, which are automatically synchronized with the DDS 

for ingestion. Once new data are produced, the DDS extract metadata, cache it and update the catalogue 

making it visible to be consumed. 

3.1.4 Processing of weather variables  

In the context of SILVANUS, weather variables are typically used to estimate the FDI by means of a data-

driven model. Nevertheless, the ML model requires these variables to be engineered in a certain way before 

making the inference (i.e., estimating the FDI). Indeed, the daily probability of fire occurrence in each area 

is sensitive to summary variables than the instantaneous data (i.e., hourly forecasts), such as the daily 

maximum or minimum values in given area/pixel. However, the variables retrieved from the DDS are not 
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homogenous on temporal (some observations are available hourly, others are observed on daily or 10-daily 

etc.) and spatial scales (different resolution). This is because the DDS can deal with different variables at 

the same time, each one eventually coming from different domains, such as EO, weather, ancillary data. 

While this provides a high flexibility in many applications, on the other side, all these variables should 

undergo processing to ensure that –at the end– they are consistent to be consumed in the desired 

application. Similarly to EO variables (see Section 2.2.2), the processing steps of weather variables can be 

defined through TOML configuration files. 

The procedures for processing weather variables are defined in the following sections. 

3.1.4.1 Disintegration of cumulative data 

Forecasts for precipitation consists of hourly cumulative sum. Therefore, it must be disintegrated to obtain 

the hourly precipitation from which the summary variable (i.e., minimum or maximum) can be computed. 

The routine however is not developed specifically for precipitation data, and it can handle another 

cumulative variable as well. 

3.1.4.2 Conversion of units 

Often the retrieved variable has a different unit than the data on which the ML-model is trained. This 

conversion must be handled for each variable separately. We use xclim [15] to handle unit conversion. 

3.1.4.3 Computing the wind speed 

Wind speed is computed from the U and V components of the wind velocity using the uas_vas_2_sfcwind 

function of xclim. 

3.1.4.4 Weather-derived variables 

Some variables are not directly retrieved from the DDS but instead they are derived from other weather 

variables. The 2-meter dew point temperature is one of the weather variables that we use in WP5 for 

estimating the FDI. We compute the dew point temperature through surface pressure and water vapour 

mixing a 2m. 

3.1.4.5 Computing summary variables 

The two kinds of summary variables have been used in the model is the daily minimum and the daily 
maximum. In each case, the maximum or minimum of a given variable in each pixel is computed from hourly 
forecasts belonging to that day. We compute:  
 

• Daily maximum temperature 

• Daily maximum surface pressure  

• Daily maximum total precipitation  

• Daily maximum wind speed 

• Daily minimum relative humidity  
 

For computing the summary variables, we use the python library geokube [2]. 
 
3.2 Innovations and updates 

3.2.1 Deployment and evaluation of numerical weather models in other pilot sites 

In addition to the operational simulations available over the Apulia Region started on April 2023 and still 

ongoing, in the second stage of the project, two new pilot sites were introduced: the Tepilora Regional 

Natural Park (Figure 10, left) located in Sardinia, and the Cova da Beira subregion (Figure 10, right) in 

central-eastern Portugal. The high-resolution operational weather forecasts were generated in the same 

manner as for the Apulia pilot region. The Tepilora domain consists of 64 staggered grid points in north-
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south direction and 60 staggered grid points in west-east direction. The Portuguese domain is slightly larger 

and spans 180 staggered points in north-south direction and 137 staggered grid cells in west-east direction. 

Two different run types have been performed (hindcast and operational forecasts), which were forced by 

National Centers for Environmental Prediction-Global Forecast System (NCEP-GFS) data and centred over 

the respective pilot site. The NCEP-GFS forecasts have been preferred to ECMWF-IFS forcings, due to data 

availability as mentioned in Section 3.1. Operational forecasts over Tepilora and Cova da Beira regions 

started progressively on 21/05/2024 and 26/07/2024 respectively and are currently ongoing. 

 

Figure 10. Forecast simulation domains and topography (in meters above sea level) of the Tepilora, 

Sardinia (left), and Cova da Beira, Portugal (right), pilot sites. The red dots in the Sardinia domain (left) 

denote the locations of the station observations used for the model evaluation. 

The hindcast simulations were driven by hourly GFS forecasts provided by the NCEP. GFS consists in a global 

model with a horizontal resolution of roughly 28 km (for forecasts in the range of less than one week). The 

hindcasts were run over the 6-month period 01/04/2024-31/10/2024. The operational forecast runs were 

forced by the same data, which could be downloaded just a few hours after the forecast initialization, 

allowing for a more instantaneous generation of the simulations. Each forecast simulation was run at a 

range of 72 hours. 

The performance of the WRF_2km@CMCC model in reproducing the atmospheric weather variability over 

the Sardinian domain and over the considered period has been preliminarily assessed using in-situ 

observations of eight stations located in the Tepilora park, provided to us by its administration. The 

locations of the single stations are represented by the red dots in Figure 10. The observations feature daily 

values for various temperature, precipitation, humidity, and wind variables. For the evaluation of the Cova 

da Beira domain, on the other hand, E-OBS [16] gridded observations were consulted. 

The model’s skill was investigated inspecting the most relevant meteorological variables, which are 

essential for the derivation of wildfire weather indicators: daily values of the mean 2-meter temperature, 

the accumulated precipitation, the mean wind speed, and the mean relative humidity. These variables were 
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assessed through PDFs and different statistical metrics mentioned below. To validate the WRF_2km@CMCC 

model against the in-situ observations, the grid cell closest to real location of the respective station was 

considered; for the validation against gridded observations, the E-OBS grid was remapped onto the 

WRF_2km@CMCC model grid to allow for a better comparison. 

The statistical metrics used for the validation are the ones commonly used in NWP model assessment. 

These include the Mean Absolute Error (MAE), the Mean Bias Error (MBE), and the Root Mean Squared 

Error (RMSE). The equations for each of these metrics are reported below. 

𝑀𝐴𝐸  =  
  ∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

𝑛
 

 

𝑀𝐵𝐸  =  
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

𝑛

𝑖=1

 

 

𝑅𝑀𝑆𝐸  =  √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2
𝑛

𝑖=1

 

with n representing the number of data points, yi being the actual target values for data point i, and xi the 

model value. 

3.2.2 Reusability of the data processing pipeline 

As stated in sections 3.1.3 and 3.1.4, the pipeline for collecting and processing data in the DDS (Section 

2.2.2) is highly configurable and modular. For this reason, it can be deployed even outside the scope of ML 

application within SILVANUS. The pipeline is configured using standard TOML files which can be configured 

according to the need. Variables which need to be consumed from the DDS datastore are configured in a 

TOML file where information related to each variable in stored. Functions for processing weather variables, 

such as those listed in Section 3.1.4, can be defined and listed in a FIFO order in the TOML file. The simplicity 

of the pipeline allows it to be reused by other partners who might want to consume variables from DDS and 

then applied a series of transformation to the data. 

3.2.3 Probabilistic FWI based on seasonal forecast 

Using the variables outlined in Section 3.1.2, we computed the FWI [17] at a seasonal scale following the 

method described in [18] for the CMCC sps3.5 model. We have also downscaled the horizontal resolution 

in the CMCC seasonal forecast model using the functions CST_Calibration and CST_BiasCorrection 

developed in the Rpackage CSTools ( [19], [20]). We have use ERA5 at 0.25º of horizontal resolution for the 

downscaling. 

To improve the skill of the forecast it is applied some recently developed sub-sampling techniques based 

on the representation of atmospheric patterns in the model with respect to the ERA5 reanalysis. The sub–

sampling approach it is further strengthened and complemented by the design and development of novel 

additional techniques of subsampling based upon physics-informed ML/AI methods (dynamical systems 

theory, [21], [22] and [23], using the function Proxiesattractor within CSTools Rpackage). In that way we 

diagnose the forecast trajectory of each ensemble member and, again by using ML techniques trained on 

the CMCC hindcasts, algorithms are produced to eliminate from the ensemble those trajectories which are 

heading toward the “wrong” sectors of the real-world climate attractor. 
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After the subsampling of members, the probability of the forecast as in Figure 11 is performed. In the figure 

it is shown the different categories of the FWI in colours and the probability in the ensemble for each 

category. This is performed in the hindcast period (1993-2016) but also in the forecast period (i.e. case of 

June July August (JJA) of 2024). 

 

 

Figure 11. Probability seasonal FWI for CMCC model in an example of hindcast, JJA of 2016. There is a 

colour scale for each category of the FWI with light or dark colours in base of the lower probability or 

higher probability of being in that category. Each point has also information about the probability to be 

below, normal or above normal conditions to know how normal or extreme is a forecast/hindcast. 

3.3 Scientific results and drawbacks 

3.3.1 Evaluation of WRF_2km@CMCC performances over the Tepilora domain 

Figure 12 displays the PDFs of the daily mean near-surface temperature for the in-situ observations (solid 

line) and the WRF_2km@CMCC model (dashed line). The solid line describes the distribution considering 

the values of all stations, while the dashed line includes all the values related to the grid cells closest to 

each of the single stations. Overall, the modelled function shows a good agreement with the observed one, 

especially for temperatures below 8°C. The stations as well as the WRF_2km@CMCC model record 

temperatures in a range of 3°C and 32°C. Both observed and modelled distributions identify two 

temperature peaks, yet at slightly shifted values; the stations register a local maximum at around 15°C and 

a somewhat higher probability density of temperatures around 22°C. The two peaks of the 

WRF_2km@CMCC model, on the other hand, lie at temperatures around 19°C and 25°C, both values 

showing very similar probability density values. Furthermore, the model underestimates the probability of 

moderate temperatures between 10°C and 17°C and overestimates the occurrence of mean daily 
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temperatures warmer than 25°C. Despite these small differences, the model well represents the range of 

value and its skewness toward higher values. 

 

Figure 12. PDFs of the 2-meter air temperature (in °C) averaged over all stations (solid line) and over all 

single model grid points closest to each station (dashed line). 

Figure 13 shows the PDFs of daily accumulated precipitation of the WRF_2km@CMCC model (dashed line) 

compared to the distribution of the in-situ observations (solid line). Again, all station observations have 

been included, while in the model, the grid point closest to each station was considered. In the case of 

precipitation, the model distinctly overestimates the non-precipitation events with respect to observations, 

whereas the probability density of light-rainfall events well reproduces the reference precipitation events 

recorded by the weather stations. 

 

Figure 13. PDFs of the daily accumulated precipitation (in mm/day) over all available stations within the 

Tepilora Park (solid line) and over all single model grid points closest to each station (dashed line).  

Figure 14 shows the PDFs of the mean daily wind speed as recorded by the weather stations (solid line) and 

as simulated by the WRF_2km@CMCC model (dashed line). The solid line represents the distribution over 

all in-situ observations, while the dashed line contains the values from the grid cell located the closest to 

each measurement station. The shapes of the two distributions are roughly of similar appearance, with 



   

 

  

23 

 

 

slightly shifted probabilities. For mean wind speeds of 12 m/s and higher, the observed and modelled PDFs 

agree with one another. Observations as well as the model recognize a maximum at wind speeds of around 

2.4 m/s, whereupon WRF_2km@CMCC slightly underestimates these peak wind speeds with respect to 

stations. Moreover, WRF_2km@CMCC lightly overestimates wind speeds between 3 m/s and 12 m/s. 

Although the wind is strongly dependent on location, the model results look anyway consistent with the 

observations. 

 

Figure 14. PDFs of the daily mean wind speed (in m/s) of all station observations (solid line) as well as of 

all single model grid cells closest to each station (dashed line).  

Figure 15 displays the PDFs of the daily mean relative humidity of the in-situ observations (solid line) and 

the WRF_2km@CMCC model (dashed line). As in the previous examples, the PDFs include the values 

registered at the available stations and those simulated at the grid point that lies closest to each station, 

respectively. Both curves have a shape very similar to a normal distribution and agree on the probability 

density of low levels of relative humidity of roughly 32% and lower. The model, however, overestimates 

the observable maximum; while the relative humidity recorded at the stations lies principally around levels 

of 65%, the model primarily simulates values around 55% at the same locations. On the other hand, the 

model underestimates humid situations with levels of 60% and above. 

Further insight into the model behaviour over the Sardinian domain can be gained by looking at the MAE, 

the MBE and the RMSE. Figure 16 reports the values of these metrics for the investigated variables at each 

observation station. It shall be noted, however, that not all stations record the variables used for the model 

evaluation. The overall picture reveals only small model errors with respect to observations. In line with the 

similar PDFs for the two-meter air temperature (Figure 17), there is a relatively low bias in this variable with 

respect to in-situ observations. The error is highest with respect to the station at Siniscola, Nuoro (40.57 

°N, 9.7 °E) with a mean bias of 0.9°C. This station, however, lies close to the sea and might thus be strongly 

influenced by marine dynamics, which cannot be well represented by the model since no atmosphere-

ocean coupling is here implemented. The overall error for the accumulated precipitation is of similar 

magnitude. This variable represents the only one that is registered by every station. Figure 13 reveals how 

there is a light underestimation of rainfall by WRF_2km@CMCC, in line with the overestimation of non-

precipitation events visible in Figure 16. The error has a moderate magnitude, lying between -0.6 and -1.4 

mm/day across all stations. As for the daily mean wind speed and the daily mean relative humidity, here 
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too the errors remain relatively small. These variables, however, are measured only at three of the seven 

available stations. The MBE for wind is in the range -0.3 to 1.3 m/s, while relative humidity is being 

underestimated by WRF_2km@CMCC with respect to the three stations, showing an MBE between -2.8% 

and -9.4%. This is consistent with the negative MBE of accumulated precipitation when evaluating against 

all seven stations. 

 

Figure 15. PDFs of the daily mean relative humidity (in %) of all available in-situ observations (solid line) as 

well as of all single model grid points located the closest to each station (dashed line). 

 

Figure 16. MAE, MBE and RMSE of daily 2m air temperature, daily accumulated precipitation, daily mean 

wind speed, and daily mean relative humidity of the WRF_2km@CMCC model against observations 

(where available). 

3.3.2 Evaluation of WRF_2km@CMCC performances over the Portugal domain 

Figure 17 displays the probability density functions (PDFs) of the daily mean near-surface air temperature 

for the WRF_2km@CMCC model (dashed line) and E-OBS gridded observations (solid line). For the 

calculations, the model grid was remapped onto the E-OBS grid and ocean grid points were masked. The 

two PDFs have quite similar shape; in both cases, local maxima are identified, albeit at slightly different 
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values. E-OBS values show a higher probability of occurrence of temperatures around 15 °C, 21 °C, and 24 

°C. The model, on the other hand, slightly overestimates the first of the three maxima (as it does in general 

with temperatures below the 17 °C mark). The second maximum, in order of increasing temperature, has a 

slightly higher probability density of temperatures around 20 °C. Values between 21 °C and 30 °C are being 

underestimated by the model. Furthermore, it does not simulate the local maximum registered by the 

gridded observations at around 24 °C. Very elevated temperatures of > 30 °C occur slightly more in the 

model than in E-OBS. 

 

Figure 17. Probability density functions (PDFs) of daily two-meter air temperature (in °C) calculated over 

all WRF_2km@CMCC land grid points (dashed line) against E-OBS gridded data (solid line) over the same 

domain. The investigated period is April-October 2020. To allow for a more consistent evaluation, the 

model grid was remapped onto the E-OBS grid.  

Figure 18 shows the cumulative frequency function of precipitation of the WRF_2km@CMCC model 

(dashed line) and E-OBS data. To account for the relatively low probability of partly very elevated rainfall 

estimates, this kind of distribution was preferred to PDFs as done for the remaining variables. Again, the 

model data was remapped onto the grid of the observations and only land grid points were considered. The 

two distributions are in relative agreement with one another until precipitation amounts of roughly 50 

mm/day, after which the frequencies drastically diverge. Observations record values of around 60 mm/day; 

the model, on the other hand, simulates values of more than 100 mm/day. At this point, it needs to be 

highlighted that E-OBS data is homogenized spatially and highly dependent on the distribution of in-situ 

observations within the geographical domain considered. Values and statistics of potentially local 

phenomena such as precipitation might thus not be fully representative, which is an aspect to be considered 

in the analysis. 
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Figure 18. Cumulative frequency of precipitation (in mm/d) as simulated by the WRF_2km@CMCC model 

(dashed line) and the equivalent domain of E-OBS gridded observations. For the model values, the grid 

was remapped onto that of E-OBS and only land cells were considered. The period investigated is April-

October 2020. 

Figure 19 displays the PDFs from values of the mean daily wind speed as estimated by the 

WRF_2km@CMCC model (dashed line) and as recorded by E-OBS gridded observations (solid line). Since E-

OBS gridded observations only include values over land territories, the model grid was remapped onto the 

observations’ grid and values over oceanic grid cells masked out. This kind of distribution is relatively similar 

to what can be observed in Figure 8 in the evaluation of the Tepilora domain. In the E-OBS data, there is a 

peak probability density at wind speeds around 2 m/s. The distribution of the values simulated by 

WRF_2km@CMCC register a similar peak, albeit at a lower density and slightly higher wind speeds; here, 

the maximum lies at around 3 m/s. Furthermore, the respective ranges of the largest fraction of wind speed 

values present in the datasets slightly differ across the two data sets. Most of the values recorded by the 

gridded observations lie between 0 m/s and 4 m/s; the values simulated by WRF_2km@CMCC, however, 

often reach speeds of up to 6 m/s. 

 

Figure 19. PDFs of daily mean wind speed (in m/s) calculated over values simulated by the 

WRF_2km@CMCC model (dashed line) and values of E-OBS gridded observations (solid line). For the 

PDFs, the model grid was re-gridded onto the E-OBS grid and only land values were considered. The 

values were calculated over the period April-October 2020.  
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Figure 20 visualizes the PDFs of near-surface relative humidity calculated from WRF_2km@CMCC model 

(dashed line) and observed (solid line) values. As before, simulated values were remapped onto the 

observations’ grid and ocean grid points were masked out to be in line with E-OBS values. The overall 

structure of both curves is in coarse agreement. Both functions agree on an increasing probability density 

towards medium-to-high humidities of around 70%. Low humidities < 50% are slightly overestimated by 

WRF_2km@CMCC, as are values around the 70% mark. Medium and elevated humidities around 60% and 

> 80%, respectively, are being underestimated compared to E-OBS. 

 

 

Figure 20. PDFs of near-surface relative humidity (in %) as recorded by WRF_2km@CMCC (dashed line) 

and E-OBS gridded observations (solid line). 

Further insight into the behaviour of the WRF_2km@CMCC model over the extended Cova da Beira domain 

can again be obtained by investigating the mean absolute error (MAE), the mean bias error (MBE), and the 

root mean squared error (RSME). Figure 21 displays the values of these metrics for the evaluated variables 

with respect to the E-OBS dataset. As with the Tepilora domain, the large picture reveals rather small model 

errors with respect to gridded observations. In line with the rather similar PDF for the two-meter air 

temperature (Figure 12), there is a relatively low MBE in this variable with respect to E-OBS data; on 

average, the model reports a temperature 0.7 K cooler than what is recorded by observations. It needs to 

be kept in mind, however, that although oceanic grid points of WRF_2km@CMCC have been masked out, 

coastal grid points might still be influenced by the proximity to the sea. Furthermore, Figure 21 clarifies that 

results are similar for the daily accumulated precipitation, although the model has proven to simulate some 

single values to be much higher than what can be observed just from E-OBS (Figure 18). With values of 1.2 

mm/day, -0.8 mm/day, and 4 mm/day for MAE, MBE, and RSME, respectively, the model error for this 

variable is of moderate magnitude. As for the daily mean wind speed and the daily mean relative humidity, 

here too the errors remain of low magnitude. The mean bias for wind is around 1.4 m/s, whereas relative 

humidity is, on average, being underestimated by the model, lying at -7.3%. Again, this is consistent with 

the slightly negative MBE of daily accumulated precipitation when evaluating against gridded observations. 
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Figure 21. Mean absolute error (MAE), mean bias error (MBE), and root mean squared error (RMSE) of 

daily 2m air temperature, daily accumulated precipitation, daily mean wind speed, and daily mean 

relative humidity of the WRF_2km@CMCC model against E-OBS gridded observations.  

In general, despite the slight differences between the model and the reference data, WRF_2km@CMCC 

achieve good performances and therefore may be used for the Fire Danger and Fire Weather Risk Indicators 

estimations. 

Finally, it is worth to mention that the goal resolution of few hundred meters has not been achieved through 
statistical downscaling techniques over the pilot sites starting from the output of WRF model, since the 
weather stations on the ground did not cover longer historical period (at least 30 years) and the distance 
among them did not fit the desired resolutions. 

3.3.3 Evaluation of CMCC seasonal FWI at European domain 

For each start date of the forecast that we have explored (with focus on May for the study of JJA season 

and August for the study of September October November (SON) season) we have evaluated the ability of 

the model in reproducing the FWI as in the reanalysis. We perform the ACC between the FWI computed 

with the CMCC model and the FWI of ERA5 in JJA and, as is shown in the Figure 22, the red colours indicates 

where the seasonal forecast system can reproduce the internal variability of ERA5. Southwestern Europe, 

the Northern of Africa and Turkey has capability of reproduced it while the southeastern of Europe has 

more difficulties  

 
Figure 22. Correlations (ACC) between JJA CMCC seasonal FWI (start date of May) and ERA5 FWI. Red 

values correspond to those regions where the seasonal forecast system can reproduce the interannual 

variability of the FWI in JJA. 

3.4 Demonstration report 

The use of technologies developed in this task, related to weather forecast and estimation of FWI have 

been developed based on the interaction with the stakeholders involved in the pilots collected during 

several meetings. Specifically, below is the detail about the activities performed for the pilots that have 



   

 

  

29 

 

 

been demonstrated in the demo performed in WP9. These details include the visualization of a specific 

weather forecasting time step for the temperature and relative humidity at 2m for each pilot region 

computed by WRF_2km@CMCC, which are two of the essential variables for fire risk assessment. The 

weather forecasts have been calculated at a range of 72h, with the main features of the configuration used 

for the operative runs summarized below: 

• Vertical coordinates: sigma-pressure with 60 vertical levels 

• Time Integration Scheme: 3rd-order Runge-Kutta (RK) 

• Horizontal discretization: Arakawa C staggered grid 

• Spatial Integration scheme: 6° order centered difference 

• Latitude-longitude grid: Lambert conformal projection 

• Time frequency: 1 hour 

• Horizontal spatial resolution: ~2km 

The semi-operational runs for each of the three pilots were performed on the JUNO supercomputer of the 

CMCC Supercomputing Center (SCC). JUNO hosts 12.240 processor cores and 170 dual processor nodes, 

with each node featuring a memory of 512 GB. 

3.4.1 Apulia-Italy Pilot  

The Italian region of Apulia was the first territory to be considered as a pilot site within the framework of 

this task. A major motivation to focus on Apulia, apart from the promising results obtained in the past with 

the WRF model over this domain, lies in the presence of the Gargano Promontory, which features forests 

prone to wildfires. Figure 23 shows the weather forecast of the 2m-temperature (left) and relative humidity 

at 2m (right) computed with WRF_2km@CMCC for the 28/07/2024 at 00:00:00 UTC+2, with the 

initialization performed on the 27/07/2024 at 00:00:00 UTC+2, over the Apulia pilot domain. In the 

horizontal, the domain consists of 210x210 grid points. The runs are performed allocating one node on 

JUNO with 32 processors. Each 72h-forecast takes up to 6.5h. 
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Figure 23. WRF_2km@CMCC forecast for the 28/07/2024 at 00:00:00 UTC+2 (initialized 27/07/2024 at 

00:00:00 UTC+2) of the temperature at 2m (left) and relative humidity at 2m (right) over the numerical 

domain of the Apulia pilot. 

3.4.2 Tepilora-Italy Pilot 

Tepilora describes a regional natural park located in north-eastern Sardinia, Italy. Figure 24 displays the 
output of WRF_2km@CMCC of the forecast time step on 28/07/2024 at 00:00:00 UTC+2 for 2m-
temperature and 2m relative humidity over the numerical domain of this pilot. Here again, the forecast run 
was initialized at 27/07/2024 at 00:00:00 UTC+2. In this case, the pilot domain includes 3.840 grid points 
(60 W-E x 64 N-S). Owing the smaller size of the domain with respect to the Apulia pilot, again one 
computation node was allocated, but with just 18 processors. The entire 72h-runs have a duration of around 
45min. 

 

Figure 24. WRF_2km@CMCC forecast for the 28/07/2024 at 00:00:00 UTC+2 (initialized 27/07/2024 at 

00:00:00 UTC+2) of the temperature at 2m (left) and relative humidity at 2m (right) over the numerical 

domain of the Tepilora pilot. 
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3.4.3 Cova de Beira-Portugal Pilot 

The third pilot site is the Portuguese subregion of Cova da Beira. Figure 25 visualizes the forecast step on 

28/07/2024 at 00:00:00 UTC+2 of the 2m-temperature and the 2m relative humidity over the respective 

simulation domain. As in the previous two examples, the corresponding forecast was initialized at 

27/07/2024 at 00:00:00 UTC+2. The domain comprises 137 grid points in west-east and 180 grid points in 

north-south direction. As the extent of the domain is somewhat similar to the Tepilora pilot, the same 

allocation of resources is used to perform the forecasts (i.e. 1 node with 18 processors). One 72h forecast 

run takes approximately 4h. 

 

Figure 25. WRF_2km@CMCC forecast for the 28/07/2024 at 00:00:00 UTC+2 (initialized 27/07/2024 at 

00:00:00 UTC+2) of the temperature at 2m (left) and relative humidity at 2m (right) over the numerical 

domain of the Portugal pilot. 
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4 Data collection, aggregation, and pre-processing of in-situ devices 

4.1 Tool description 

The task includes the development of a distributed data architecture and software protocols to 
communicate with various in-situ data collection devices, such as IoT devices, EMDCs, and FCCs. IoT devices 
developed for UP4a and UP9b detect fire/smoke and assess air quality, respectively, by utilizing ML 
algorithms and collecting sensor data from the field. EMDCs (UP4b) collect and process images/videos to 
identify fire occurrences and serve as gateways for data transmission to the SAL. FCCs (UP10) are employed 
to support commanders with vital services such as the Data Ingestion Pipeline (DIP), the SILVANUS 
dashboard (UP11), and data synchronization with the cloud, which is important in cases that lack network 
connectivity or cannot afford data transmission latencies. By including these devices and protocols the 
project facilitates the handling of fire emergency events by enabling local data processing, storage, and 
visualization. Some of these technologies and protocols were tested in the 2023 pilot activities (see D9.3). 
In upcoming pilot exercises, we will conduct more thorough tests on these technologies and protocols, 
while focusing on those that have not yet been tested in the field. 

4.2 Innovations and updates 

4.2.1 Fire detection from IoT devices 

Several updates and improvements have been made during the M19-M36 period both on hardware and 

software regarding fire detection from IoT devices (UP4a). These improvements address key challenges 

encountered during pilot tests and exercises, such as the need for reliable data transmission, efficient 

cooling, and fast data processing, making sure the IoT is responsive in several operational scenarios. An 

overall description of the device, the produced data format and data ingestion pipeline can be found in 

D4.1, while details on the development and training of the fire and smoke detection models can be found 

in D4.2 and D5.1, respectively. 

A major update is the redesigning of the case (see Figure 26), which is now larger and features better air-
flow management for cooling down the device’s components. The new design makes the case more 
ergonomic and enables improved hardware organization. One example of these updates is the inclusion of 
a placeholder for the Global Positioning System (GPS) antenna, which makes it more stable and ensures 
there are no dangling wires, minimising the chances they get damaged by forest animals and harsh weather 
conditions.  
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Figure 26. (Left) New case for our IoT, (Right) Previous IoT case. 

Another important update is the successful integration with SAL, enabling data transmission from IoT 
devices (and IoT Gateways), their ingestion in the SILVANUS cloud and/or FCCs, and finally, their 
visualization on the SILVANUS dashboard (see Figure 27). In the dashboard end users can view archived IoT 
data, but most importantly get the status of the deployed IoTs and receive notifications for any detected 
fire or smoke events from the IoT captured images. This addresses real-time data monitoring and response. 

 

Figure 27. Example of SILVANUS dashboard for Smoke/fire detection (IoT) layer. 

Furthermore, the IoT’s software was updated to further improve its functionalities. In detail, the code was 
optimized by applying concurrent programming techniques, thus separating the data capturing, processing, 
and transmission operations. This improvement significantly reduced the time required for the device to 
alert all responsible personnel about fire-related events addressing the need for rapid response in 
emergency situations. In addition, leveraging images collected from pilots the performance of the 
fire/smoke detection ML algorithms were further increased by applying finetuning techniques. 
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Additionally, the synergy between IoT devices and EMDCs was tested in two different scenarios. The first 

one, was to use EMDCs as a gateway. In other words, the IoT devices deployed in the field transmitted data 

to the gateway (EMDC), which was then responsible for the propagation of that data to SAL. In the second 

scenario, the EMDC was used as another IoT device, that would be deployed on a fire engine or in a building 

in the area of interest (e.g., lookout tower), to ensure it has adequate power supply. A camera sensor, such 

as a Universal Serial Bus (USB) or Internet Protocol (IP) camera, was connected to the EMDC to collect 

images that were later analysed by the detection ML algorithms for any potential fire or smoke outbreaks. 

These updates enhance connectivity and data flow, important to effectively monitor the field for possible 

fire/smoke events in heterogeneous scenarios. 

4.2.2 Fire detection from edge devices 

The tool detects fire and smoke using near real time footage or photos taken by drones or cameras. 

This tool provides a fire and smoke detection using high-end devices for the videos or photos taken from 

any source. It can analyse the images in near real time (less than 1 sec). The objective of the tool is to 

provide a very reliable detection of fire and smoke during the phases of prevention (A) or fight against the 

fire (B). With this automatic detection, the operator doesn't need to check manually and continuously all 

cameras. The system can raise an alert based on the automatic detection to make the operator aware of 

the possible danger whenever a fire/smoke is detected. In this sense, is a tool for supporting the decision 

and helping the operator by providing evidence (in the form of images with fire or smoke detected) of what 

is really happening. A detailed description of the tool can be found in D5.1. 

During the last period, the algorithm used has been retrained using new images of fire and smoke in forest 

areas. Also, we tested the full integration in remote and corrected the issues of connectivity with Kafka and 

the dashboard (format of the JavaScript Object Notation (JSON) and general connectivity issues with Kafka). 

4.2.3 IoT for air quality assessment 

Making use of a network of IoT devices, both portable and stationary, that are equipped with various gas 

and particle sensors, this module effectively monitors the spatial evolution of pollutant levels. The data 

collected from these in-situ observations is transmitted wirelessly to a remote server, which is tasked with 

implementing the European Air Quality Index (EAQI) methodology to assess air quality, and subsequently 

sharing the inferred outcomes via suitable RESTful APIs and SILVANUS infrastructure to relevant 

stakeholders. The architecture of the Air Quality Assessment (AQA) system (UP9b) is demonstrated in detail 

in D5.3.  

The proposed system was enriched throughout the M19-M36 period to further support the decision-

making process related to fire management. More precisely, health-related messages containing guidelines 

for both the general population and vulnerable groups complements the deduced level of air quality index. 

These sensitive groups encompass adults and children suffering from respiratory issues as well as adults 

with heart conditions. For instance, the characterization of the ambient air quality as ‘Poor’ is accompanied, 

adopting EAQI recommendations, by the messages ‘Reduce intense activities outdoors, if you experience 

symptoms such as sore eyes, a cough or sore throat.’ and ‘Reduce physical activities, particularly outdoors, 

especially if you experience symptoms.’ addressing the general population and vulnerable groups, 

respectively. In addition, a list of key performance indicators pertaining to relative risk has been attached 

to the outcomes of this system, based on the recommendations provided by the Health Risks of Air Pollution 

in Europe (HRAPIE) project regarding concentration–response functions for key pollutants. These indicators 

provide a quantitative basis for estimating the health burden associated with exposure to emissions from 

wildfires over both short-term and long-term periods. A comprehensive description of the aforementioned 

AQA system updates is presented in D5.5. 
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4.2.4 Forward Command Centers 

The FCCs are key components of the SILVANUS platform, enabling data processing and decision-making 

directly at forest fire sites (i.e., at the edge). The FCC is designed and built as a customized replica of the 

SILVANUS platform, ensuring that its functionalities are available at incident sites. An FCC consists of the 

following components: 

• Kubernetes Cluster: A single Kubernetes cluster to host system components and the decision 

support system's UPs. 

• SAL: Enables ingested data to be stored and handled directly on the FCC. 

• Message Queue Instances: Utilizing RabbitMQ to enable north-south and east-west data stream 

communication. 

• Retrieval Mechanisms: Direct and claim check pattern retrieval mechanisms, where the former is 

suitable for lightweight data and the latter is better suited for large data files. 

• Query Interface: Allows retrieval of data at rest using either of the retrieval methods. 

• DIP: Enables data preprocessing from SILVANUS data sources as well as external data sources. 

• DSS’s UPs: Play a crucial role in forest fire management. The FCC allows the DSS to operate without 

needing to access the SILVANUS cloud. 

4.2.4.1 FCC East-West Communication 

The goal of the East-West Communication API is to ensure secure communication with the platform's 

peripheral systems, particularly among the various FCCs within the same pilot site. The east-west API is 

implemented leveraging the federation mechanisms provided by RabbitMQ. 

Federation in RabbitMQ allows the connection of queues and exchanges across different RabbitMQ 

brokers, facilitating the creation of distributed and scalable systems. Unlike clustering, federation enables 

flexible connections between independent brokers, ideal for scenarios such as those in SILVANUS pilots. 

The main advantages of federation include scalability, to distribute the workload across multiple brokers; 

flexibility, to allow connecting brokers across different networks or data centers; reliability, for allowing 

continuation of service even if one broker fails; efficiency, reducing latency in message delivery. 

To implement federation in RabbitMQ, Federation Links are configured between brokers, specifying the 

destination broker's URI, credentials, and the queues or exchanges to be federated. Each RabbitMQ 

instance has its own "Master.exchange" connected to internal fanout exchanges like "air-quality" and 

"evacuation-routes." These "Master.exchanges" are federated with each other, facilitating message 

distribution among the different RabbitMQ instances. Opting for a single federated exchange simplifies 

management, providing a single control point for message flow, with the possibility to further refine 

internal routing logic using bindings with specific routing keys according to specific needs. 

The FCC can be used to ingest data collected during drone flights into the SILVANUS Cloud. In the first period 

(till M18) we developed a process to request computation of drone flight routes (computed using 

algorithms developed in T4.6) using an EmerPoll system deployment at the FCC (see Figure 28). As an input 

a monitored area and flight latitude together with the number of available drones is inserted. As the output 

the optimal flight route plans are calculated using different available services for a specified number of 

drones. The individual routes need to be subsequently loaded to individual drones (resp. to drone pilots). 

The related work was also published in [24]. 
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Figure 28. Process of computing drone flight routes at the FCC. 

In the second period (M19-M36) the implementation of the approach as well as the in-field demonstration 

preparations were carried out. The main innovations and improvements achieved are: 

• the development of the DroneReport poll template,  

• an FCC-capable deployment of the EmerPoll subsystem,  

• service for semi-automatic drone image stitching and  

• implementation of the DroneReport and images ingestion into SAL.  

The unique feature of the approach is collection and aggregation of images from many various drones (and 

drone types) in a uniform and integrated way. Images are primarily stored in the EmerPoll image storage. 

Selected images can be ingested into SAL and be passed to other components for processing, such as for 

fire detection (described in the previous section). Recently, a dedicated map layer is being implemented 

and integrated in the Dashboard to display the drone flight paths as well as the images taken by drones. 

4.3 Scientific results and drawbacks 

4.3.1 Fire detection from IoT devices 

UP4a - Fire detection from IoT devices, has participated in several pilots/tabletop exercises including 
Croatia, France, Gargano - Italy (tabletop exercise), Greece (tabletop exercise), Australia, and Czech, 
mentioned in chronological order. The status of UP4a related KPIs, during trial period 1, was listed in D9.3. 
In total, seven tests were completed in the four field exercises (Croatia, France, Australia and Czech) and 
the Gargano tabletop exercise, where material was collected offline by an EMDC from 2 different smoke 
sources. In Australia, two different tests were completed, one with a static IoT device and a moving one, 
were an IoT was mounted to a UGV. 

An important accomplishment is that we achieved for the fire detection a false alarm rate of 5%, 

significantly below the 15% threshold. Nevertheless, we have more work to do for the smoke detection 

false alarm rate as it exceeds slightly the desired limit. Despite this, we have surpassed the expected 70% 

on true positive rates for both the fire and smoke with 90% and 93%, respectively. However, the missing 

rates for fire and smoke detection are 10% and 7%, which are above the desirable limit. This indicates a 

need to refine our algorithms further. Though it is anticipated that the fire detection algorithm will 

outperform that of smoke one, because of the phenomena form. That is fire is more easily distinguished 

because of its color and shape, compared to smoke which can be easily confused with mist or clouds. 

Regarding the time required to identify an ignition and notify relevant personnel, the IoT performs within 

the expected time range. With measurements taken at 6 frames per second, the total time varies from 20.5 

to 46 seconds (depending on the network connectivity), which is under the 1-minute mark. More tests will 
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be conducted in the upcoming periods using different network types to have a more thorough analysis of 

the time needed to process and send the collected data.  

Despite the successful deployment and testing of the IoT device in several field exercises, some limitations 

still need to be addressed. The sensor measurement capabilities of the IoT are limited by design (a few 

meters), so the device primarily uses them to collect microclimate information rather than for fire/smoke 

predictions. The device therefore relies on the camera input to provide fire/smoke event predictions, which 

can be affected by lighting conditions and/or device positioning. For example, placing the device in direct 

sunlight will compromise the camera's functionality and therefore the ML algorithms' results. In addition, 

the camera can be obscured by dense vegetation, which will limit its detection range. It is therefore crucial 

to strategically place the devices in the area of interest, considering the terrain characteristics, to ensure 

maximum camera coverage. Additionally, the device relies on Wi-Fi or cellular networks for data 

transmission, which could lead to communication issues with the SILVANUS platform in their absence or if 

the bandwidth is limited. Moreover, the devices have limited battery life and lack autonomous charging 

capabilities, which restricts their operational duration in the field, although we are considering 

incorporating solar panels to enable them to be recharged. Another concern is that the current case is not 

waterproof, which could lead to damage during heavy rain and compromise the device’s functionality. 

Furthermore, the current case material is not fireproof either, but the final product will be made from 

materials that are both waterproof and heat-resistant to some extent. 

UP4a has demonstrated strong capabilities in the early detection of fire and smoke events, leading to 

minimizing wildfire casualties, cost savings from forest fires, forest conservation, and protection of wildlife 

and forest animal habitats. However, there is still work to be done to address the highlighted limitations. 

Addressing these challenges is crucial for improving the reliability and performance of the IoT devices across 

various environmental conditions. 

4.3.2 Fire detection from edge devices 

The module has been used by real pilots in the field providing a very good level of detection. Also, it has 

demonstrated its potential for near real time analysis. As a potential drawback or limitation, we need to 

test further and quantify the number of false positives (that is, false fire/smoke detections) and false 

negatives (that is, real fire and smoke not detected). As a secondary drawback, the necessity of a high-end 

device (computer) needed for the analysis must be mentioned. 

4.3.3 IoT for air quality assessment 

The real-time monitoring of the concentrations of harmful emissions released into the atmosphere during 

a wildfire and the consequent characterization of the ambient air quality and the compilation of the list of 

the relative risk indicators are valuable information for decision-makers within an integrated fire 

management system. Nevertheless, given that the portable IoT devices lack a fixed position and are instead 

transported by individuals, careful consideration should be given to the dimensions and weight of each 

constituent due to their impact on the personnel's mobility and endurance. In addition, some emerging 

challenges of the proposed system pertain to its effects on communication and energy costs. The utilization 

of Hypertext Transfer Protocol (HTTP) proves to be costly in terms of communication resources, leading to 

increased network overhead and higher mobile data usage compared to alternative communication 

protocols in existing literature, despite the convenient framework offered by REST API. Furthermore, the 

portable solution's energy consumption is elevated because of employing Raspberry Pi, in addition to 4 

Inter-Integrated Circuit (I2C) sensors, 1 Universal Asynchronous Receiver-Transmitter (UART) sensor, and 1 

UART 4G HAT, as opposed to a simple Micro-Controller Unit (MCU). A more comprehensive analysis of 

results and drawbacks is presented in D5.5. 
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4.3.4 Forward Command Centers 

The current version of the FCC has many functionalities crucial for wildfire management. However, several 

improvements can be made to the FCC design and implementation to make it more suitable for real-time 

deployment. The following are some of these improvements: 

• Dynamic Management and Enforcement for Tenant Isolation: Currently, tenant isolation 

regarding data streams (i.e., over the message bus) requires manual configuration by the message 

bus admin. We propose an upgraded mechanism where data access requests and responses occur 

only between data producers and consumers, streamlining the process and enhancing security. 

• Salvaging Data with Incomplete or Incorrect Metadata: In the current version, the SAL discards 

ingested data with issues related to their metadata, which can significantly impact real deployment 

if data sources are misconfigured. The proposed enhancement aims to reduce discarded ingested 

data by automatically fixing improperly attached metadata. 

• Hosting Proprietary Software Locally: Implementing a mechanism to host proprietary software on 

the FCC will enable it to operate independently without needing internet access. This will enhance 

the FCC's reliability and functionality in remote or isolated locations. 

The East-West Communication API has been implemented through Rabbit MQ Federation, which involves 

some specific advantages in the context of the SILVANUS platform. In particular, when connectivity is lost, 

messages are still queued locally, and they are consumed as soon as connectivity is back. This aspect is a 

clear advantage if compared with the alternative clustering approach, as federation supports failover, while 

instead clustering would better support use-cases in which high volume of data transfer is required and 

latency is minimized. 

Another aspect that needs to be considered is that federation replicates messages across all RabbitMQ 

nodes, which on the one side ensures failover, but on the other side this adds additional latency, as 

replication of data across nodes requires additional time to be achieved.  

The national legislative and safety requirements for pilots and drone flights (both piloted and unmanned) 

are a major limiting factor for deploying the developed solution for in its full potential. For instance, the 

pilot should always have its drone in direct visibility and needs to directly control its operations. The other 

potential drawbacks of the proposed solution are: 

• Collection of images from drones is available only after the drone landing. 

• Need to recompute routes if one of the drones becomes non-operational or unavailable or if the 

area becomes a non-flight zone. 

• Trade-off between image file sizes - its transfer times from an FCC and time required to stitch 

images together. In case of larger high-quality files, a relatively high-speed data connection to 

ingest images from FCC into the SILVANUS Cloud is required. Long times required to stich images 

(for instance flight 2-UISAV: 37 min. for 140 images with 80% overlay). 

The results of all the test flights are shown in Table 5. 
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Table 5. Process of computing drone flight routes at the FCC. 

Flight # of UAV # of 

images 

taken 

Flight Time Merging 

process 

status 

Merging 

process 

time (fast-

orthophoto) 

Merging 

process 

time (high 

resolution) 

flight 1-UISAV  1 119 21m61s done 14m33s - 

flight 1-THALES  1 119 - done 15m9s - 

flight 2 -UISAV 2 (120m) 65 11m47s not all 5m11s 17m6s 

flight 2-UISAV 2 (115m) 75 13m49s done 6m1s 20m58s 

flight 2-UISAV 2 65+75 - done - 37m56s 

 

4.4 Demonstration report 

4.4.1 Fire detection from IoT devices 

The participation in several pilots resulted in the collection of feedback from various stakeholders and the 

continuous advancement of the fire/smoke detection IoT devices. Below is a timeline of the trials, 

challenges, achievements, improvements, and outcomes for each pilot where the IoT was tested. 

4.4.1.1 Croatia Pilot - 2023 

Field testing: First pilot to test the IoT in-situ. At the time only the fire detection algorithm was deployed 

on the IoT along with the Global System for Mobile Communications (GSM)/ Long-Term Evolution (LTE) 

adapter, and temperature/humidity sensors. The device successfully captured data, transmitted them to 

Catalink’s server and visualised on a simple UI for validation. At the time SAL and the SILVANUS dashboard 

were under development and could not be tested, therefore temporary substitutes were used. The device 

efficiently sent data using the on-board SIM card and a wired connection to a MESH in the Sky (UP12) node, 

as shown in Figure 29. The device recorded 53 image-related events with GPS coordinates and sensor 

measurements. Additionally, 44 short videos were collected that were later used to extract more frames 

for the evaluation of the smoke detection algorithm. 

Challenges: Due to heavy rain in the days prior, the firewood was soaked, resulting in only heavy smoke 

and very small flames, which the fire detection algorithm could not detect. This issue, combined with 

stakeholder feedback emphasizing that early smoke detection is crucial, highlighted the need for an 

additional smoke detection algorithm. 
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Figure 29. UP4a IoT device connected to the MESH in the Sky node. 

4.4.1.2 France Pilot - 2023 

Field testing: The focus of this pilot was to test the newly added smoke sensor and detection algorithm, 

along with the use of the EMDC as an IoT Gateway. In detail, two IoT devices were placed on trees 

monitoring the area the smoke would be released (see Figure 30) and an EMDC near the command centre. 

Data collected from the IoT devices were sent to the Gateway, which in turn transmitted data to SAL for 

storing. Additionally, mocks up of the SILVANUS dashboard and the IoT layer (among others) were shown 

to the end-users for the collection of feedback on their functionality. The devices captured 428 smoke-

related events consisting of images, GPS coordinates, and sensor readings. 

Challenges: At the time, the devices were not assigned static IPs from the SILVANUS Virtual Private Network 

(VPN), making communication and data exchange more challenging. To address this, a temporary VPN was 

set up between the IoT devices and the Gateway, but this solution made the setup less stable. As a result, 

some data were stored only locally in the Gateway and not transmitted to SAL. Additionally, the dense 

vegetation and mist-like smoke caused the smoke detection algorithm to struggle in recognizing smoke in 

some instances. The algorithm's low performance highlighted the absence of such challenging scenarios in 

the training data and underscored the importance of proper IoT device placement. To address these issues, 

data collected from the pilot were used to improve the algorithms, and acquiring information about the 

pilot location beforehand will aid in better device positioning. Lastly, with the addition of the new 

components to the IoT, the case became too small, and some components were exposed making the device 

more fragile. This emphasized the need for the designing of a new device that would better fit the new 

sensors. 
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Figure 30. UP4a enhanced with smoke detection algorithm. 

4.4.1.3 Italy Tabletop - 2023 

Prior to this tabletop exercise, the EMDCs were setup with a USB camera (which acted as a stationary IoT 

device) in Gargano to collect material, such as videos, of two fire simulations using a smoke grenade and 

lightning torch, respectively. Later, that material was used to test both the fire and smoke detection 

algorithms on varying smoke densities and fire behaviours. These results were later presented to the 

participating stakeholders for feedback and the initiation of a discussion of how the EMDCs (with the 

detection algorithms) and/or IoTs could be leveraged to improve the monitoring and protection of the 

national park. 

4.4.1.4 Greece Tabletop - 2023 

During this tabletop exercise the IoT was presented to the local stakeholders through a simulated wildfire 
scenario, where the functionalities and benefits of using such devices were presented, along with results 
from the previous pilot activities. The collected feedback was positive and highlighted the effectiveness 
and need of such fire/smoke detecting devices for the early identification of fire outbreaks and their 
imminent suppression. 

4.4.1.5 Australia Pilot - 2023 

Field testing: The main objectives of this pilot was to test the live transmission of data from the devices to 

SAL and the synergy of UP4a and UP5a, for the detection of smoke from UGVs. During the pilot, one static 

and one moving IoT device were tested in variations of the smoke detection task. For the smoke detection 

while on a moving object, an IoT was mounted on a UGV, as shown in Figure 31, where the first was checking 

for any smoke outbreaks while the second was mapping the field. For the case of the static IoT, a smoke 

machine was used to produce smoke at different densities, to validate the performance of the smoke 

detection algorithm. A total of 131 events were send to SAL and 160 short videos stored locally for fine-

tuning the IoT’s algorithms. 

Challenges: During the experiments, the IoT struggled to detect low-density smoke. Post-pilot analysis 

revealed the issue was not with the detection algorithm but with the device's programming. The device was 

set to capture a new image only after the previous one was successfully transmitted, causing it to miss the 
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low-density smoke while waiting for transmission to complete. To overcome this issue concurrent 

programming methods were applied to reduce the response time of the device. 

 

Figure 31. UP4a mounted on CSIRO’s UGV.  

4.4.1.6 Czech Pilot - 2024 

Field testing: This was a crucial pilot as it would be the debut of the SILVANUS dashboard and the testing 
of the full data pipeline, i.e., starting from the data transmission, moving to their storing in SAL and finally 
their visualisation to the end-users. Regarding the IoTs, two devices were placed on trees, at two different 
locations, to test their detection capabilities for fire and smoke in varying landscapes and lighting 
conditions. Furthermore, two different connectivity tests were conducted, a wireless connection to the 
satellite network provided by MESH in the Sky (UP12) nodes, this time deployed on a drone, and with a 
cellular network from the devices’ SIM card. These tests helped to measure response times when 
propagating data to SAL and to validate event visualisation in the SILVANUS dashboard (Figure 32). In this 
pilot the redesigned case was introduced (as presented in Section 4.2.1) and the improved code 
(exploitation of concurrent programming) was assessed. In total 184 events were captured and 168 of them 
were successfully transmitted to SAL. Additionally, 182 videos stored locally for fine-tuning the algorithms. 

Challenges: The transparency of the flames and lighting conditions affected the fire detection algorithm, 

causing it to miss the fire events on some occasions. However, the collected data will be used to further 

enhance the algorithms. Additionally, after this discovery, augmentation techniques, such as altering image 

brightness, will be applied to improve the algorithm's robustness in similar situations.  

Through these in-situ experiments and offline exercises, we have achieved significant advancements, 

including the improvement of the fire and smoke detection algorithms, upgraded case for the IoT, 

successful field tests in various conditions, and enhanced code execution time. The IoT devices will be 

further tested in Portugal, Croatia and Greece pilots, while they will be presented remotely in the remaining 

pilot sites through the respective layer in the SILVANUS dashboard. During these pilots the IoTs and 
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detection algorithms capabilities will be further tested, through different scenarios (including their 

communication with the FCC), while simultaneously focusing on overcoming the aforementioned 

limitations. Lastly, UP4a will contribute data to UP9h – Integrated Data Insights (see D5.3 and D5.4) for the 

generation of possible threat alerts to the end users, to take informed decisions. 

 

Figure 32. Visualizing UP4a layer on dashboard.  

4.4.2 Fire detection from edge devices 

The module has been used in a real field pilot in Czech Republic (Ostrava area). It will be demonstrated 

during 2024 in other pilots. Confirmed so far, the tool will be used in Portugal and Italy (in both venues) 

presential and Romania and Greece in remote. In any case, the list of pilots where the tool will be present 

is still under negotiation and may still change. 

Previously the tool was demonstrated in a tabletop exercise in Evia (Greece). At that time, the tool was not 

integrated with the dashboard. 

During Czech pilot, the module was able to detect fire and smoke using videos and photos (taken on site) 

and even a live cam (computer webcam) with high reliability fulfilling the KPIs. In this regard, video was 

analysed at 14 frames per second (soft real time). There was only one false positive detection measured in 

the full video. False negatives rate was not measured in the video, but none was detected in the photos. 

During this pilot, we full integration of the Up4b with the SAL and the dashboard was demonstrated. 

Participants were able to see the images of fire detected and the alerts raised in the dashboard. 

4.4.3 IoT for air quality assessment 

The proposed Health Impact Assessment module was presented during both a tabletop exercise, which 

took place in Evia (Greece), and a pilot held in Krásná (Czech Republic) as demonstrated in Figure 33 and 

Figure 34. In both events, the proposed system received favourable responses/comments from the 

stakeholders who were involved. There was a notable level of interest shown towards IoT devices that are 

specifically adopted for the purpose of monitoring the ambient air quality and assessing the potential health 

impacts on firefighters following a wildfire outbreak. The inclusion of portable equipment was particularly 

valued, given that firefighters could conveniently affix it to their vehicles and transport it effortlessly. A 

comprehensive pilot testing scheme is currently in progress, encompassing the implementation of this 

system in the field settings across a range of wildfire incident scenarios. 
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a) Equipment installation b) Equipment operation 

Figure 33. UP9b and MESH in the Sky integration. 

It is necessary to underscore that synergies were developed with SILVANUS partners throughout the pilot's 
activities. Illustrative instances encompass our integration with RINI’s MESH in the Sky (UP12) Figure 33, 
and the installation of portable solution on an UGV (3MON) as shown in Figure 34. In this way, the UGV 
(UP5a) can proceed first to monitor the air quality. If the air quality is deemed good, the firefighters can 
then move in and operate at the fire scene. Our involvement in forthcoming pilots includes the placement 
of the equipment onto an UAV - drone followed by the assessment of its functionality within an FCC (UP10). 

 

 

 

 

Figure 34. Installation of UP9b on an UGV. 

4.4.4 Forward Command Centers 

East-West Communication first demonstration 

East-West Communication has been tested in a first demonstration scenario which involved the interaction 

with the EMER POLL application. The demonstration involved the usage of two VMs simulating each of them 

an EMDC instance.  

The scheme of this demonstration is provided in Figure 35. The Fire Report module is designed for the 
detailed collection of fire data. Users can report new fires by providing comprehensive information such as 
location, description, and the status of the fire. The CE App is an application dedicated to end-users for 
submitting fire reports to the EMER POLL system. EMER POLL is the central report management system, 
responsible for collecting and organizing information sent by users.  
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Figure 35. Architectural scheme of the East-West API first demonstration. 

A second VM is connected to the first one by means of a RabbitMQ federation, which allows to transfer the 
fire report messages and to visualize it on a UI dashboard hosted on EMDC2, providing redundancy and 
ensuring operational continuity in case of failures or overloads of EMDC1. The distribution of the workload 
between EMDC1 and EMDC2 allows the system to handle a high volume of data and operations, improving 
overall efficiency and reducing the risk of service interruptions. The dashboard provides users with a visual 
overview of the status of fires and received reports, presenting detailed information through an intuitive 
graphical interface. Operators can continuously monitor the development of emergency situations, viewing 
GPS coordinates of fires, user-provided descriptions, and other relevant data. 

In this scenario, an app user spots a fire and uses the CE App to send a detailed report. The app allows the 
user to input crucial information such as their current location and the location of the fire, a detailed 
description of the event, and the status of the fire. Once the report is completed, the app sends the message 
via the Message Queue Telemetry Transport (MQTT) protocol to a specific channel configured on the 
EMDC1. The EMDC1 receives the message and transmits it to various subscribers, including EMDC2 and 
EMER POLL. EMER POLL captures the message and initiates a poll to gather further details about the fire, 
while EMDC2 serves as a backup, ensuring redundancy and operational continuity. The report is displayed 
in real-time on the EMDC2 dashboard, where operators can monitor the fire status, view GPS coordinates, 
and read the notes provided by the user.  

This demonstration focused on the implementation and verification of using different communication 
channels for each pilot site, testing the interaction between RabbitMQ instances installed on EMDC1 and 
EMDC2 connected via RabbitMQ Federation. The main objective of this demonstration was to evaluate the 
effectiveness of distributed communication and centralized management of fire reports in both real and 
simulated environments. During the demonstration, a dedicated MQTT communication channel was used 
to send and receive messages related to fire reports. This approach allowed us to isolate and monitor the 
performance of each channel, ensuring that data was transmitted reliably and promptly. The interaction 
between RabbitMQ instances was closely monitored to evaluate latency, message transmission speed, and 
overall system reliability. The federation configuration allows for bidirectional and asynchronous 
communication, enabling the data centers to continuously synchronize data and manage reports in a 
coordinated manner. 
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5 Social media sensing and concept extraction 

The Social Media Sensing framework is a comprehensive system designed and developed to collect, analyse, 

and process social media posts related to fire incidents to support the involved stakeholders in decision 

making during a fire incident. This framework integrates various components that enrich the data and 

detect relevant fire events, which are then stored in a MongoDB and made accessible for end-users through 

visual interface. 

5.1 Tool description 

The process, as illustrated in Figure 36, begins with data collection, primarily utilizing a Twitter Crawler 
(described in Section 5.2.1.1) that connects to the Twitter API [25]. This crawler is responsible for 
formulating complex queries to retrieve tweets that are potentially related to fire incidents. Once the data 
is collected, the retrieved posts are stored in a MongoDB database in JSON format. These posts are then 
subjected to further analysis by different components within the Social Media Analysis Toolkit (described 
in Section 5.2.2), which operate through individual API calls. The results of these analyses are appended to 
the original JSON posts, enriching them with additional insights. 

 
Figure 36. Social media sensing Framework. 

As shown in Figure 36, the Social Media Analysis Toolkit comprises both textual and visual analysis modules. 
The textual analysis includes several key modules: 

• Relevance Classification: This module assesses whether the post is pertinent to fire incidents. 

• Text Categorization: It organizes posts into specific categories based on their content. 

• Concepts Extraction: This module identifies and extracts significant entities such as names, 
organizations, and locations from the text. 

• Event Recognition: It detects and identifies important events mentioned in the text. 

• Locations Extraction: This module automatically extracts geographical information from the text, 
supporting multiple languages, including English, Italian, French, Greek, Indonesian, and Slovak. 

 
In parallel with textual analysis, the visual analysis involves the following modules: 
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• Image Filtering: This module filters out irrelevant images from the posts. 

• Fire & Smoke Detection: It analyses images to detect signs of fire or smoke. 

• Concepts Extraction: This module annotates images with labels from a pool of concepts related to 
fire events, enabling the retrieval of high-level information from them 

• Locations Extraction: It extracts location data directly from the images, providing additional 
geographical context to the post. 

Once the posts have been enriched with additional information from the Social Media Analysis Toolkit, they 
are periodically analysed by the Fire Events Detection module (see Section 5.2.2.3). This module scans the 
collection of posts to detect any fire-related events. When an event is detected, it is sent to a message 
queue within the SAL, where it can be consumed by the SILVANUS UI to be visualized as pins on a map (see 
Section 5.4). 

5.2 Innovations and updates 

5.2.1 Social Media Crawling 

The Social Media Crawling module plays a crucial role in monitoring and analysing real-time data from 

various social media platforms. Its main goal is to deliver a continuous and dependable stream of data, with 

a particular focus on posts related to wildfires based on pre-defined search criteria. By utilizing the 

functionalities of different social media APIs, this module ensures prompt and efficient data collection, 

which is vital for disaster management and response. 

This section provides an update of the X Crawler that has been presented in D4.2 Section 4.1, describing 

the changes and the new features added in the crawler. 

5.2.1.1 Implementation of the X Crawler 

X is a widely used platform [26] with millions of unique users who engage in various activities, including 

disaster reporting like fire incidents. To leverage this, CERTH has developed a crawler that consumes posts 

in near real-time from the X API, providing a crucial tool for monitoring and analysing real-time data. This 

section outlines the crawler’s key components and functionalities. The crawler's main goal is to retrieve 

social media posts related to wildfires, ensuring a continuous and dependable stream of data. Among its 

key features are the ability to monitor X's public stream in real-time, filtering mechanisms that focus on 

specific keywords or user accounts, and the capability to manage large volumes of data. Additionally, the 

crawler operates within ethical guidelines and complies with X's terms of service, ensuring that all data is 

lawfully acquired. 

X has revised its pricing policy for the X API, transitioning it from a free service to a service with a monthly 

subscription fee. Most of the rate limits have seen significant reductions compared to the previous free 

version of the Twitter API, and the available functionalities have been noticeably scaled down. The Free tier 

no longer allows reading posts, and the Basic tier, which costs $100 per month, only permits reading up to 

10,000 posts per month and does not include access to real-time data or short-term historical data. Access 

to these functionalities is now restricted to the Pro tier, which comes with a hefty price tag of $5,000 per 

month. Given the significant reduction in rate limits and functionalities across the different tiers of the 

current X (formerly Twitter) API, the Basic version emerges as a practical choice for a system designed to 

collect X posts for wildfire detection. Despite the limitations, such as the restricted rate limit of 10,000 posts 

per month and the absence of real-time data access, the Basic tier still offers essential features like the 

ability to write and read posts, which are critical for continuously monitoring social media activity. 

The decision to choose the Basic version is driven by a balance between cost and functionality. At $100 per 

month, it provides a feasible solution for maintaining a stream of relevant data without the prohibitive costs 
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associated with the Pro version. While the Pro version offers more extensive capabilities, its high cost makes 

it less viable. 

In response to the recent changes in X's API policies, CERTH has adjusted its approach to a monitoring-

based crawling strategy. This shift is designed to improve the efficiency of post retrieval while mitigating 

the impact of rate limits. By periodically monitoring the number of posts and concentrating crawling efforts 

during periods of significant activity spikes, CERTH can more effectively capture data related to specific 

search queries. This approach optimizes the collection of relevant posts. 

The crawler utilizes the Recent Tweet Counts [27] endpoint to periodically monitor social media activity, 

looking for significant increases in the number of X posts since the last check. When such an increase is 

detected, it suggests a potential event, prompting the retrieval of posts generated within that specific time 

frame. Conversely, if no significant rise in post volume is observed, the crawler stops collecting posts during 

that period. This method ensures that relevant posts are maximized while staying within the platform's rate 

limits. 

During times of heightened activity, the crawler collects posts by querying the Recent Search endpoint [28] 

of the X API at 30-minute intervals. These intervals are governed by the platform's rate limit, which permits 

calls to the Recent Search endpoint only every 30 minutes. The queries are carefully crafted with the search 

criteria keywords, phrases, and user accounts relevant to wildfires. The crawler then retrieves data that 

meets the predefined criteria set in the Recent Search endpoint. After retrieving the relevant posts, the X 

Crawler sends the data to the Social Media Analysis Toolkit. This module processes and analyses the posts 

to extract useful information. It comprises both textual and visual analysis modules. Finally, after analysis, 

the posts and their extracted data are stored in a MongoDB database in JSON format. An overview of the 

crawling architecture is depicted in Figure 37. 

 

Figure 37. Crawling Architecture. 

5.2.1.2 Monitoring and anomaly detection 

An analysis was conducted on a dataset derived from the social media platform X, focusing on historical 

data collected between June 2019 and August 2022. This dataset consists of 7,990 posts about wildfires in 

Greece. 

The aim of the study was to develop and evaluate different methodologies for ongoing monitoring of social 

media activity, especially during times of increased posting activity. The research had two key objectives: 

firstly, to pinpoint and visually highlight periods of significant activity on the platform; and secondly, to 

identify the most effective technique for real-time monitoring and detecting anomalies in anticipation of 
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future events. The following methodologies employed in the analysis, offering a comparison of their 

approaches, results, and effectiveness in identifying the best strategy for continuous monitoring. 

5.2.1.2.1 K-means 

For anomaly detection within social media data, we employed the K-Means [29] clustering algorithm to 

analyse patterns in tweet counts. The data were grouped into 30-minute intervals, with the tweet counts 

aggregated within each interval to form a time series. This time series served as the input for the K-Means 

clustering algorithm, which was tasked with identifying clusters of tweet activity over time. 

K-Means clustering partitions the data into a predefined number of clusters based on similarity. Each data 

point, representing a 30-minute tweet count, is assigned to the nearest cluster centre. The algorithm 

iteratively refines these clusters until the optimal partitioning is achieved. 

As illustrated in the accompanying Figure 38, the tweet counts are visualized as coloured dots, with each 

colour representing a different cluster. The red crosses denote the centres of these clusters, representing 

the average tweet activity within each group. This visualization reveals distinct periods of tweet activity: 

• Clusters of High Activity: These are often associated with significant events or topics that generate 

increased interest on social media. 

• Consistent Activity: Some clusters capture periods of steady tweet activity, indicating ongoing 

discussions or sustained interest in certain topics. 

• Outliers: The clustering also highlights periods that deviate from typical patterns, which could signal 

unusual or noteworthy events. 

 

Figure 38. Results for K-Means method. 

K-Means clustering proved to be a valuable tool in monitoring social media activity. By identifying clusters 

of high tweet counts, we can detect periods of significant public interest. 

5.2.1.2.2 Isolation forest 

In the isolation forest algorithm [30], the process began by aggregating data into specific time intervals, 30-

minute periods, where post counts were summed within each interval. The result was a time series of post 

counts, which served as the input for the anomaly detection algorithm. 

In the time series of aggregated post counts, as illustrated in Figure 39, anomalies are highlighted with red 

markers. This visual representation makes it easy to identify periods of unusually high posting activity. What 
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sets this method apart is its ability to distinguish true anomalies from regular cyclical patterns, such as daily 

or weekly fluctuations. This capability significantly reduces the likelihood of false positives, ensuring that 

the identified anomalies genuinely reflect significant deviations from the norm. This distinction helps 

reduce the number of false positives and ensures that the identified anomalies are truly significant 

deviations from the norm. 

 

Figure 39. Results for Isolation Forest method. 

5.2.1.2.3 Long Short-Term Memory 

The Long Short-Term Memory (LSTM)-based [31] approach was employed to detect anomalies in the tweet 

count data over time. The data were first aggregated into 30-minutes intervals, resulting in a time series 

where each point represents the total number of tweets within a given hour. This time series was then used 

as input for the LSTM model, which is particularly suited for capturing and predicting sequential patterns in 

data. 

As shown in the Figure 40, tweet counts are represented by the light blue line, while anomalies are indicated 

by red markers. These anomalies appear where the actual tweet counts differ significantly from what the 

LSTM model predicted. Unlike the Isolation Forest method, which detects anomalies based on how much 

they stand out from the overall data, the LSTM approach focuses on finding irregularities in the sequence 

of tweet activity over time.  

LSTM can lead to a higher frequency of detected anomalies, as seen in Figure 40. While this can be useful 

for identifying all potential deviations, it also requires careful interpretation to distinguish between truly 

significant anomalies and minor fluctuations in tweet activity. This potential for over-detection underscores 

the importance of setting appropriate thresholds to balance the detection of significant events against the 

risk of false positives. 
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Figure 40. Results for LSTM method. 

5.2.1.2.4 Moving Average 

The Moving Average method [32] was used to detect anomalies in tweet counts over time. In this approach, 

a moving average was calculated over the time series to establish a baseline of typical tweet activity. The 

data were aggregated into 30-minute intervals, creating a time series that captures the tweet counts within 

each period. This time series served as the foundation for the anomaly detection process. 

As shown in the Figure 41 the tweet counts are depicted by the light blue line, while anomalies are marked 

with red dots. These anomalies represent periods where tweet activity significantly deviated from the 

expected pattern, as determined by the moving average. Unlike more complex methods like LSTM or 

Isolation Forest, the Moving Average method is straightforward and easy to implement. It effectively 

identifies spikes or drops in activity that deviate from the overall trend. 

One of the strengths of the Moving Average method is its simplicity and transparency. It provides a clear 

and easily interpretable way to detect anomalies, making it ideal for scenarios where a quick and 

understandable analysis is required. However, its reliance on smoothing can sometimes overlook more 

subtle or abrupt changes in the data, which might be captured by more sophisticated methods. 
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Figure 41. Results for Moving Average. 

5.2.1.2.5 Comparison of different methods 

After evaluating the strengths and weaknesses of each method across four key criteria—Robustness, 

Outlier Detection, Reduced False Positives, and Flexibility—a comparison table was created. These criteria 

were chosen to ensure the reliability and effectiveness of the anomaly detection methods in handling 

diverse and unpredictable social media data. Robustness and Outlier Detection are essential for accurately 

identifying significant deviations, while Reduced False Positives and Flexibility ensure that the method is 

both precise and adaptable to various monitoring scenarios. Together, they provide a balanced assessment 

of each method's capability to detect meaningful anomalies in real-time. 

Based on the comparison in Table 6, the Isolation Forest method is the most suitable choice for anomaly 

detection. Its strengths include: 

• Robustness: Isolation Forest is highly effective across various data patterns, including both dense 

and sparse regions, making it well-suited for the diverse nature of social media activity. 

• Outlier Detection: Its focus on detecting outliers ensures that significant deviations, which could 

indicate noteworthy events, are identified without being overwhelmed by regular fluctuations. 

• Reduced False Positives: The method’s ability to distinguish between true anomalies and cyclical 

patterns significantly reduces the likelihood of false positives, ensuring that detected anomalies 

genuinely reflect important deviations. 

• Flexibility: While computationally intensive, the algorithm’s flexibility and effectiveness in 

unsupervised anomaly detection make it a powerful tool for continuous monitoring. 
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Table 6. Comparison of Anomaly Detection Methods. 

Criteria K-Means Isolation Forest LSTM Moving Average 

Robustness 

Moderate: 

Effectiveness 

depends on 

cluster selection 

and data 

regularity. 

High: 

Works well across 

diverse data 

patterns, handling 

both dense and 

sparse data. 

High:  

Captures patterns 

and detects subtle 

anomalies over 

time. 

Moderate: 

Handles general 

trends well but 

may miss subtle 

or abrupt 

changes. 

Outlier Detection 

Limited:  

Focuses on 

grouping similar 

patterns rather 

than detecting 

outliers. 

Excellent: 

Specifically 

designed for 

outlier detection 

without needing 

labelled data. 

High: 

Effective in 

detecting both 

isolated spikes 

and irregular 

sequences. 

Moderate: 

Identifies 

deviations from 

the moving 

average but may 

miss more 

complex outliers. 

Reduced False 

Positives 

Moderate: 

Depends on the 

choice of clusters, 

may miss or 

incorrectly 

identify 

anomalies. 

High: 

Effective at 

distinguishing 

true anomalies 

from regular 

patterns, 

minimizing false 

positives. 

Moderate: 

Sensitive to minor 

deviations, which 

can lead to a 

higher rate of 

false positives. 

Moderate: 

Straightforward, 

but its simplicity 

might lead to 

overlooking or 

misclassifying 

anomalies. 

Flexibility 

Moderate: 

Requires careful 

selection of the 

number of 

clusters to be 

effective. 

High: 

Adaptable to 

different types of 

data with tuning 

of parameters like 

contamination. 

Moderate; 

Powerful but 

requires complex 

tuning and 

interpretation to 

avoid over-

detection. 

High:  

Easy to 

implement and 

interpret, ideal for 

quick, basic 

analyses. 

In conclusion, Isolation Forest provides the best balance of accuracy, robustness, and practicality for the 

specific task of monitoring tweet activity related to wildfires. Its ability to identify true anomalies while 

minimizing false positives ensures that critical events are detected promptly and accurately, making it the 

optimal choice for ongoing monitoring. 

5.2.1.3 X Crawling 

The X data that was collected and stored spans the period from the beginning of the crawl on December 

23, 2021, until September 02, 2024. During this period, approximately 1 million fire-related tweets were 

amassed across five pilot projects: P01, P03, P07, P09, and P10. 

As seen in Table 7, English emerged as the dominant language in all pilots, gathering the largest number of 

tweets, which was anticipated given its global usage. Italian is the second most prevalent language, with 

around 30,000 tweets, while Greek follows with approximately 12,000 tweets. Notably, Indonesian Twitter 

users do not seem to actively engage in fire-related discussions or reporting, as shown by the lack of 

collected tweets. On the other hand, both Italian and Greek Twitter users show considerable activity 

surrounding fire incidents, indicating that fire-related issues are of significant concern within these regions. 



   

 

  

54 

 

 

A key insight from this data collection is the limited geolocation information provided directly by Twitter. 

Only about 0.1% to 0.8% of tweets have geolocation data embedded from Twitter's JSON output. However, 

by leveraging the CERTH Localization web service, the percentage of geotagged tweets dramatically 

increases, ranging from 24.2% to 49.5% depending on the pilot. This enhancement in geolocation data is 

invaluable, especially when combined with external data sources like satellite imagery. It underscores the 

importance of CERTH’s service, as Twitter itself lacks a substantial number of geotagged tweets, making 

third-party localization crucial for extracting geospatial insights from social media data. 

Moreover, between 5.7% and 10.8% of the tweets collected contain at least one image. While this may 

seem like a small portion of the overall dataset, the visual content within these tweets can provide rich and 

detailed information. These images offer an additional layer of data that can be utilized in comprehensive 

visual analyses through tools such as the Social Media Analysis Toolkit, adding depth to the overall 

understanding of fire-related incidents captured in the tweets. 

Table 7. Pilots and tweets collected for each pilot. 

Pilot Language 
Collected 

Tweets 

Location from 

Twitter 

Location from 

CERTH’s 

Localization 

Contain Image 

P01 
English 47,036 141 (0.3%) 12,111 (25.8%) 1,270 (9.4%) 

Italian 26,457 53 (0.2%) 13,963 (52.8%) 1,055 (4.0%) 

P03 
English 247,506 1,485 (0.6%) 68,352 (27.6%) 20,243 (8.2%) 

French 209 1 (0.1%) 79 (37.8%) 9 (4.3%) 

P07 
English 134,173 1,208 (0.9%) 31,931 (23.8%) 9,231 (6.9%) 

Greek 46,301 69 (0.1%) 18,748 (40.5%) 2,006 (4.3%) 

P09 English 28,137 56 (0.2%) 9,927 (35.3%) 2,078 (7.4%) 

P10 
English 39,180 78 (0.2%) 10,274 (26.2%) 1,506 (9.1%) 

Indonesian 0 0 (0.0%) 0 (0.0%) 0 (0.0%) 

 

5.2.2 Social Media Analysis Toolkit 

This section provides an update on the analysis modules in the Social Media Analysis Toolkit, as described 

in D4.2. These modules are organized based on the type of input they process—either textual content (see 

Section 5.2.2.1) or visual content (see Section 5.2.2.2). 

Social media posts collected from platforms like Twitter, Facebook, and web crawlers are fed into the 

various components of the Social Media Analysis Toolkit through individual API calls. These modules then 

analyse both the visual and textual content of each post, enriching the post's metadata with deeper insights. 

This enhanced metadata is crucial for the Fire Events Detection module, which uses it to identify fire-related 

events and provide actionable information to users of the SILVANUS Dashboard. 

5.2.2.1 Textual analysis of social media content 

This subsection provides an update of the textual analysis modules provided by the Social Media Analysis 

Toolkit in D4.2. The analysis methods employed by these modules are as follows: 

I. Text Categorization - Relevance Classification - Concepts Extraction: Involves categorizing social 

media posts based on their relevance to the topic of interest and classifying them into different 

categories based on their content. 

II. Event Recognition: Identifies significant events mentioned in social media posts, e.g., as fires. 

III. Location Extraction: Extract location information from social media posts text. 
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5.2.2.1.1 Text Categorization - Concepts Extraction 

HB has experimented with and successfully completed a new web service module for the UP3 pipeline 

called ‘TweetAnalyzer for Information Fusion’ to further develop textual analysis, complementing the 

existing ‘Relevance Classification and Text Categorization’ plus ‘Textual Concepts Extraction’ modules for 

text categorization and text mining in the Social Media Analysis Toolkit (D4.2). The module computes the 

heated nature of messages by their semantic intensity [33], [34] vs. social importance [35] measured by 

sentiment analysis vs. centrality values, with the results as new metadata forwarded to the ontology and 

the knowledge graph. By a proactive stance, it thereby connects T4.4 with T5.2, utilizing CERTH’s test 

dataset of tweets, and is hosted by courtesy of CERTH. 

The TweetAnalyzer is a tool which does statistical analysis of tweets by means of sentence embeddings 

(SBERT) [36], dimensionality reduction (t-SNE) [37]), sentiment analysis (SentiArt) [38], centrality analysis 

(Page Rank) [39], clustering (k-means) [40], and various other methods. The functions of this tool are 

fourfold: 

• Isolate and highlight phrases and word pairs (bigrams, typically adjective-noun phrases) within 

tweet texts, so that they can be used for further analysis. 

• Perform analysis of tweets, both with and without the context of isolated phrases or bigrams, 

expressing results as coordinate values. 

• Offer a method to investigate which coordinates can logically be grouped together by k-means 

clustering, and to investigate which grouping would be optimal by silhouette analysis [41]. 

• Provide a method through which the 2-d vs. 3-d coordinates can be plotted to allow for visual 

inspection of the results. 

The tool does this by offering a backend API, which returns responses in JSON format. The API is Python-

based (FastAPI) [42], employs Docker for isolation and containerization, and uses Poetry for Python package 

versioning [43]. It employs Git for version control and is documented using Swagger [44]. 

After originally having carried out two sets of relevance classification experiments on altogether 5 social 

media datasets in English, Greek, Italian and Spanish, all provided by CERTH, HB reused established text 

processing workflow combining preprocessing, sentence embedding, dimensionality reduction, clustering 

of semantic content, and visualization as reported in D4.2. Starting with M19, in more detail we explored 

our strategy called Track B there, addressing the dynamics of evolving semantic content. Underlying that 

line of thought was the observation of topic outbursts [45]. After having also checked out two other 

methods, Top2vec [46] and TopSBM [47] [48], we stated that Topic Modelling (TM) by Latent Dirichlet 

Allocation (LDA) [49] could reliably identify wildfires as the central concept in the test data. We foresaw 

that by extracting changing compositions of index terms in document sets characterized by some 

progressive feature such as geographical location or timestamps, one could characterize event progress as 

a series of topic outbursts by Dynamic Topic Modelling (DTM) [50]. A version of this idea is also 

implemented as part of the BERTopic toolkit we used for testing [51]. 

Next, we focused on the spatiotemporal nature of the clustering of semantic content, i.e. how to handle 

the problem of incoming social media messages with evolving topicality such as the changing intensity of a 

fire event vs. its changing perception in the public eye. Key to our line of thought was to develop a method 

which can be reused both in a firefighting context and its political fallout, such as opinionated debates about 

responsibilities typical of Phase B. Also, it was important that the tool should be able to monitor good news 

expected in Phase C too, not just bad one’s characteristic for disaster management. By respective language 

fine-tuning, our module was conceived to help not just firefighting but other forms of natural and 

humanitarian disasters as well. The respective round of experiments until M30 was solely using the 

timestamped 4K tweets dataset provided by CERTH. 
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The scientific novelties underlying HB’s web service module development efforts are listed in the next 

section. In terms of development, within the context of the project period, three major releases of the 

TweetAnalyzer were published: 

• Release v0.1 (24-07-03) drafted the basic structure of the module, offering Dockerization, version 

control, and package management for its requirements. Functionalities/deliverables provided were 

an endpoint to measure SentiArt scores for a tweet message (implemented as sum of its parts) as 

well as a t-SNE endpoint. 

• Release v0.2 (24-07-12) expanded the set of endpoints with new ones for bigram isolation and 

ranking of word pairs, as well as a Page Rank implementation for a list of tweets. Furthermore, 

some optimizations to SentiArt were introduced to speed it up. 

• Release v0.3 (24-08-26) added plotting endpoints for scatter, contour, and arrow diagrams of the 

t-SNE-produced coordinates and changed the code structure to a tidier version using Python mixins. 

5.2.2.1.2 UISAV Facebook Post Analyser module 

The Named Entity Recognition (NER) model of the Facebook Post Analyser has been enhanced to recognize 

more classes (extended from 3 to 7), fine-tuned and evaluated. Description with examples of the 

recognizable Named Entity (NE) classes by the new model is provided in Table 8. A new dataset has been 

prepared using a manually annotated subset of 1,869 Facebook posts, selected from a total of 2,355 posts 

collected before the deprecation of the Facebook Groups API and the removal of the ability for group 

admins to install apps in groups, even with admin or developer roles on the app. 

Table 8. NE classes recognized by the new enhanced NER model of the Facebook Post Analyser. 

Class Description Examples 

keyword action regarding the fire (verb, 

noun, adjective) 

inhale, extinguish, burn, fire, 

flame, smoke 

time time of the event 

 

11:15, today, yesterday, 

before nine 

unit unit which was used during 

the response 

volunteer fire brigades, 

mountain rescue service, 

soldiers, policemen, HaZZ 

fire_area what was on fire (noun) 

 

grass, hall, flat, house, 

chimney, garage, cathedral, 

straw 

equipment what equipment were used 

during the response 

dron, vehicle, rank, helicopter, 

pump, jet 

location location of the event cities, villages, hills, factory 

areas, countries 

 

The dataset was annotated by 3 annotators, their annotations were merged with Cohen’s kappa set to 0.7 

and aligned by a fourth annotator. The distribution of the entity classes in the dataset is provided in Table 

9. 

Ratio of 80%, 10% and 10% was used to create training, validation and test datasets (i.e., 1884, 235, 236). 

The fine tuning involved experimenting with different batch sizes, number of epochs, max. number of 

tokens, optimizers, learning rate schedulers to finally settle to 8 posts in a batch, 512 tokens, Adaptive 

Moment Estimation (ADAM) optimizer, Polynomial learning rate scheduler. 
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Table 9. Distribution of entity classes within the dataset. 

Class Counts 

fire_area 949 (586) 

keyword 1,749 (182) 

time 623 (468) 

unit 1,099 (536) 

equipment 159 (228) 

location 1,452 (680) 

other 24,822 

all words 33,534 

 

Another hyper parameter that was examined was the minimal length of the post (number of words divided 

by whitespace) and inclusion of posts without entities of interest. Subsequently, the number of relevant 

posts has changed accordingly leading to train 4 different models: 

• All posts (Model 1): 2,355 

• All posts with length at least 3 words (Model 2): 2,217 

• Posts with length at least 3 words and with entities only (Model 3): 1,783 

• Posts with entities only (Model 4): 1,869 

The models were evaluated over the test dataset. Detailed evaluation results are presented in Table 10, 

while the overall evaluation is presented in Table 11. 

Table 10. Precision, Recall and F1 statistics for individual classes and models. 

 Precision Recall F1 

Class/Model M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

Location 0.89 0.85 0.89 0.81 0.92 0.90 0.89 0.86 0.90 0.88 0.89 0.83 

Fire area 0.73 0.77 0.70 0.81 0.76 0.74 0.78 0.81 0.74 0.75 0.74 0.81 

Unit 0.79 0.64 0.70 0.74 0.83 0.74 0.72 0.81 0.81 0.69 0.71 0.77 

Equipment 0.69 0.55 0.76 0.63 0.69 0.67 0.76 0.61 0.69 0.60 0.76 0.62 

Keyword 0.88 0.88 0.87 0.88 0.84 0.90 0.86 0.82 0.86 0.89 0.87 0.85 

Time 0.85 0.80 0.76 0.77 0.76 0.87 0.83 0.78 0.80 0.83 0.79 0.77 

 

Table 11. Overall performance of individual models. 

 Posts with entities only  All posts 

All posts 

Precision:  0.79770 

Recall:  0.81104 

F1:  0.80431 

Accuracy:  0.90250 

Precision:  0.83304 

Recall:  0.83598 

F1:  0.83451 

Accuracy:  0.93727 

Posts with at least 3 words 

Precision:  0.80000 

Recall:  0.82572 

F1:  0.81266 

Accuracy:  0.90559 

Precision:  0.79595 

Recall:  0.83969 

F1:  0.81724 

Accuracy:  0.91890 
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Looking at the F1 statistics, Model1 and Model2 are the best for 2 classes. Location and Unit for Model 1 

and Keyword and Time for Model2. The Equipment class is the hardest one to predict. This is because the 

number of the entities in this class is small (159). In our opinion the Model 1 could be considered as the 

“best” one, because of its robustness. To build this model, the largest dataset (all posts) was used. Also, the 

Precision is good compared to other models (4 classes). But on the other hand, the numbers are not as 

good as it was expected, when it comes to F1 statistics. Especially numbers of Equipment (7% worse than 

best result) and Fire area (7% worse than best result) classes. If other classes of Model 1 are compared, F1 

statistics are close to the best ones. 

It can be seen from the overall results that the model trained on all the posts (Model 1) gives the best 

results, regarding precision, F1 and accuracy. The only statistics in which it was not superior is Recall, where 

the model trained on posts with length of at least 3 words (Model 2) gives the best performance. Please 

note that Recall of Model 1 is close to that of Model 2. The reason for this is because the one- or two-

word(s) posts are non-informative. They consist mainly of keywords – like “fire arise”, “date”, “time”, or 

they are using emoticons for fire and fire truck and so on. But in the end, all the models are almost on the 

same level, when comparing the F1 statistics. 

5.2.2.1.3 CERTH’s Relevance estimation module 

Social media data is emerging as a vital tool for real-time situational awareness in natural disaster scenarios, 

including wildfires. Suitably filtering Twitter text data can improve practical response by authorities. CERTH 

developed a relevance estimation module that employs AI and Natural Language Processing (NLP) to 

determine the relevancy of a tweet to a wildfire event. Numerous NLP techniques have proven effective in 

binary text classification tasks. However, over the past decade, Deep Neural Networks and Transfer 

Learning have increasingly come to dominate the NLP field – largely motivated by the introduction of 

Transformer architectures and the subsequent development of models based on these architectures, such 

as Bidirectional Encoder Representations from Transformers (BERT). 

In the context of SILVANUS, we approach Relevance Estimation as a supervised classification task. In this 

case, the datasets used are binary-labelled (0 or 1), signifying an irrelevant or relevant tweet, respectively. 

To illustrate the module's functional, we consider two arbitrary sentences containing keywords from the 

data collection phase. An example of a relevant sentence could be, “The fire is burning the whole forest 

right now!”, whereas an irrelevant sentence might be, "Arson’s rap is on fire!". The model's output should 

manifest as a probability mass function for the outcomes 0 and 1, denoting the probability of a tweet being 

irrelevant and its complementary probability of being relevant. 

In summary, the primary objective of this process is to filter posts from X, ensuring that users receive 

content relevant to the specific topic of interest, namely, wildfire incidents. This study will focus on three 

different languages, English, Italian and Greek. 

In this study we first evaluate the performance of the statistical Born Classifier (BR) to establish an ML 

baseline before exploring transfer learning with transformer models. This approach is motivated by two 

primary factors: first, the limited number of comprehensive studies on disaster relevance estimation, 

particularly given the inherent data collection biases in social media analysis; and second, the diversity of 

languages, which can impact the performance of transfer learning models due to differences in training 

datasets. The BR will be assessed using two NLP representation techniques: Term Frequency-Inverse 

Document Frequency (TF-IDF) and Bag of Words (BoW). Subsequently, our analysis will shift to the 

implementation of DL methods, using open-source BERT models and their variations as the basis for 

transfer learning. The application of the BR will be implemented using scikit-learn library [52] in Python. 

Fine-tuning is a transfer learning technique where a model pre-trained on a large dataset is further trained 

on a smaller, specialized dataset to adapt its knowledge for specific tasks. This process enhances the 
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model's performance on the new data by adjusting its learned features to better suit the nuances of the 

targeted domain or task. 

Table 12 presents the annotated data used in our experiments for Greek, Italian, and English. For English, 

the FireXPosts dataset from the “Fire Detection for Emergency Responders using X” by [53] was utilized. 

This dataset also includes a Greek subset of 582 posts, which was used to supplement the previously 

collected 4,880 Greek posts. All posts were gathered using CERTH’s crawler, and the annotation process 

was supported by expert end users. 

Table 12. Number of relevant and irrelevant tweets per language. 

 

Languages 

Number of tweets  

Relevant Irrelevant Total Number 

Greek ~ 2190 (40 %) ~ 3280 (60 %) ~ 5470 (100%) 

Italian ~ 580 (38 %) ~ 950 (62%) ~ 1530 (100%) 

English ~ 620 (44%) ~ 780 (56 %) ~ 1400 (41%) 

 

Table 13 presents all the models evaluated on each dataset, including the BR, and highlights the best-

performing ones for each language. 

Table 13. Performance metrics for all models. 

Language Model Accuracy Recall Precision F1-score 
Training 

Time(s) 

Greek 

BoW & BR 0.8492 0.8756 0.7739 0.8216 0.11 

TF-IDF & BR 0.8547 0.8594 0.7919 0.8243 0.10 

'nlpaueb/bert-base-greek-uncased-v1' 

8 epochs: {0: 2e-6, 7: 2e-7} 
0.8770 0.8880 0.8208 0.8529 391.53 

‘EftychiaKarav/DistilGREEK-BERT’ 

13 epochs: {0: 2e-5, 12: 2e-6} 
0.8688 0.8563 0.8245 0.8396 310.00 

‘ClassCat/roberta-small-greek’ 

5 epochs: {0: 2e-5, 2: 2e-7} 
0.8806 0.8606 0.8451 0.8527 87.55 

Italian 

BoW & BR 0.9216 0.9652 0.8473 0.9024 0.02 

TF-IDF & BR 0.9477 0.9826 0.8898 0.9339 0.02 

‘dbmdz/bert-base-italian-cased’ 

11 epochs: {0: 2e-6, 9: 2e-8} 
0.9288 0.9572 0.8700 0.9104 144.73 

'osiria/distilbert-base-italian-cased' 

16 epochs: {0: 2e-6, 8: 2e-7} 
0.9340 0.9419 0.8911 0.9157 

112.03 

 

'osiria/roberta-base-italian' 

16 epochs: {0: 2e-6, 8: 2e-7} 
0.9523 0.9264 0.9264 0.9383 201.76 

English 

BoW & BR 0.7964 0.7244 0.8070 0.7635 0.05 

TF-IDF & BR 0.7857 0.6850 0.8131 0.7436 0.05 

‘google-bert/bert-base-cased’ 

4 epochs: {0: 2e-5, 1: 2e-6, 2: 2e-7} 
0.8310 0.8264 0.7989 0.8113 44.66 



   

 

  

60 

 

 

‘distilbert/distilbert-base-cased’ 

8 epochs: {0: 2e-6} 
0.8164 0.7918 0.7918 0.7904 141.50 

‘FacebookAI/roberta-base’ 

4 epochs: {0: 2e-5, 2: 2e-7} 
0.8386 0.8565 0.7951 0.8239 154.00 

 

5.2.2.2 Visual analysis of social media content 

This subsection provides the updates of the visual analysis modules provided by the Social Media Analysis 

Toolkit in Deliverable D4.2. The methods employed by these modules are: 

I. Fire and Smoke Detection in Images: This method utilizes computer vision techniques to identify 

flames or smoke in images (see Section 5.2.2.2.1). 

II. Visual Concept Extraction: Uses object recognition algorithms to extract meaningful visual concepts 

and objects from images, such as buildings, vehicles, and people. The extracted information is 

stored in the metadata of the post (see D4.2, Section 5.2.2). 

III. Location Extraction: Extracts location information from images of a social media post (see D4.2, 

Section 5.2.3). 

5.2.2.2.1 Fire and Smoke Detection in Images 

The fire and smoke detection algorithms used for the Social Media Sensing Toolkit, that were discussed in 

Chapter 4 of this deliverable, are identical to those deployed in the fire detection IoT devices (UP4a). For 

the purposes of this task, the selected algorithms were deployed on CTL’s servers and a web service was 

created (using REST API) to allow CERTH to use them on demand. In detail, the API receives HTTP POST 

requests with a list of image URLs, contained in social media posts, to be checked for fire/smoke 

occurrences. In turn, the API responds with the fire and smoke scores per image in the JSON format of the 

social media analysis modules described in D4.2 Section 6.1. An example of the API call, using URL client 

(cURL), is shown in Figure 42 and the corresponding response in Figure 43. It is important to note that if a 

link is invalid (e.g., the image is no longer available) it will be ignored by the detection service and scores 

will only be provided for the remaining images, as shown in the example provided. To maintain near real-

time performance for the toolkit, the image-based fire/smoke detection service aims to provide responses 

in under a minute, depending on network bandwidth and the number of query images. Since the service 

typically operates over Wi-Fi or Ethernet, network bandwidth is usually not a concern, leaving the number 

of images as the primary factor. Based on the conducted tests, typically a social media post contains 0-5 

images, the API response time for such cases is between 20-40 seconds, well within the one-minute 

threshold. 

 

Figure 42. Example of image-based fire/smoke detection API call, using cURL command. 
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Figure 43. Example response of the image-based fire/smoke detection API. 

As mentioned in Section 5.2.1.1 of D4.2, the fire and smoke detection algorithms have been trained on a 

robust and diverse image dataset, which was further enriched with examples from SILVANUS pilot activities. 

The challenges encountered during the live testing of the IoT devices, such as poor lighting conditions, are 

less common in this context due to the human factor, which ensures images are captured under ample 

light. This reduces the likelihood of missing a fire event in an image. However, visual verification alone is 

not sufficient to categorise a social media post as relevant to an ongoing wildfire, as demonstrated in [53]. 

For example, a post might refer to a wildfire awareness campaign that uses images from past incidents to 

emphasise its message, rather than indicating a current event. While visual verification is important to make 

a post more trustworthy, it must be paired with textual analysis to ensure accurate identification of relevant 

content. This prevents overwhelming the SILVANUS platform users with unrelated posts and thus alerts. 
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5.2.2.3 Fire Events Detection 

The Fire Event Detection module plays an important role in monitoring and identifying potential wildfire 

incidents by leveraging social media data. This system combines temporal and spatial clustering technique 

to group relevant posts, enabling the detection of fire events across various geographic regions in near real-

time. By analysing both the timestamp and location of posts, the module ensures that the fire events are 

based on the most current and relevant information available. 

Clustering is a critical component of the fire event detection process, allowing the system to group social 

media posts based on their temporal and spatial proximity. This process is essential for detecting and 

analysing potential fire incidents across various geographic regions using social media data. The workflow 

begins with the retrieval of relevant data from MongoDB collections, each representing distinct data 

sources collected by the crawlers (see Section 5.2.1.1). A key aspect of this workflow is dynamically 

determining the date range for analysis, focusing on data from the previous month. This strategy ensures 

that the system operates with the most current information, enhancing its ability to respond promptly to 

real-time events. By using up-to-date data, the system increases its sensitivity to detecting and analysing 

potential fire incidents, thereby improving overall situational awareness and responsiveness. 

After the data is retrieved, the system formulates queries on MongoDB based on the predefined time range 

and the relevance of each post. This step ensures that only posts potentially related to fire events are 

considered for further analysis. By filtering posts based on relevance—such as specific features or locations 

indicative of fire-related content—the system reduces computational overhead and concentrates resources 

on the most pertinent data. This focused approach enhances the system’s ability to accurately identify and 

respond to actual fire events, ensuring that alerts and actions are based on credible and timely social media 

data. 

Clustering is a crucial phase where the system groups post according to their temporal and spatial proximity 

to identify potential fire incidents. This is accomplished using the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm [54], configured with parameters like the minimum number of 

posts per event and the time window size. For example, setting the "minimum posts per event" parameter 

to 10 ensures that only clusters with at least 10 posts are considered significant enough to indicate a 

possible fire, reducing false positives and improving the reliability of detection. The "time window size" 

parameter determines how long posts are aggregated for clustering, which affects the granularity of event 

detection. 

The clustering process further organizes posts into weekly segments based on their chronological order, 

making the data more manageable for analysis. Within each time segment, the system evaluates the 

geographic and temporal proximity of posts. The spatial proximity check ensures that posts within a 10-

kilometer distance are grouped together, while the temporal check ensures that posts within the same 

batch period are considered. Posts that meet both criteria are clustered together, representing potential 

fire events. These clusters, which contain a specified minimum number of posts, are then formatted into 

JSON for further analysis. 

Throughout the detection process, the system monitors its performance, logging execution times for 

clustering and keyword extraction to ensure efficiency and timely insights into emerging fire events. 

Implemented in Python, the system operates via a Flask-based RESTful API, allowing it to receive HTTP GET 

requests and initiate the detection process every 15 minutes. This configuration ensures that the system 

can be remotely triggered and promptly respond to new data inputs.  

Once fire events are identified, they are stored along with their associated metadata in MongoDB, making 

them readily accessible for further use within components of the SILVANUS platform, including visualization 

through SAL. 
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To assess the fire detection module's performance the fire event detection algorithm was run without any 

relevance filtering, meaning all detected posts were considered, regardless of their specific connection to 

wildfires. To verify the accuracy of these detected events, a cross-referencing process was undertaken. This 

involved comparing the detected events' details—such as keywords like "wildfire," "fire," "blaze," and the 

associated dates and locations—with reliable information from news reports and official sources available 

on the internet. This step was crucial for confirming that the events identified were indeed significant 

wildfire incidents. By checking against published news articles and official reports, we ensured that each 

event's classification as a real wildfire was based on credible external validation. 

The initial execution of this method resulted in the identification of 51 events. Out of these, 42 were 

confirmed as actual wildfire incidents, while 9 were categorized as non-wildfire events or warnings. As a 

result, the initial accuracy of detecting real wildfire events based on keywords and context was 

approximately 82%. 

To further improve accuracy, a Relevance Estimation analysis was applied to filter out non-relevant posts. 

This refinement reduced the number of detected events from 51 to 42. Among the 9 events that were 

filtered out, 8 were initially classified as non-wildfire events or warnings (False Positives), and 1 was a real 

wildfire event (False Negative). 

Consequently, the filtered accuracy, which accounted for the relevance of the posts, improved to 

approximately 93.2%. This increase in accuracy reflected a more precise identification of real wildfire events 

and a significant reduction in false positives. 

The results presented in Table 14 show that the fire event detection module exhibited strong performance, 

achieving an initial precision of 82% and a recall of 100% without filtering. After the relevance estimation 

algorithm was incorporated, precision improved significantly to 98%, while recall decreased slightly to 

around 95%. The initial unfiltered method was more comprehensive in detecting events but had a higher 

rate of false positives. In contrast, the filtered method improved precision but at the expense of missing a 

few actual wildfire events. The relevance estimation algorithm effectively refined the detection process, 

though further optimization and fine-tuning could enhance the module's performance, ensuring more 

accurate detection of real wildfire events while maintaining high precision. 

Table 14. Fire event detection evaluation. 

Statistic Initial Method Filtered Method 

True Positives (Real Wildfire 

Events) 
42 41 

False Positives (Non-Wildfire 

Events) 
9 1 

False Negatives (Non-Detected 

Real Wildfire Events) 

- 2 

True Negatives - - 

Total Events 61 42 

Precision 0.82 0.98 

Recall 1.00 0.95 

Accuracy ≈ 82% ≈ 93.2% 
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5.2.2.4 Integration with SAL 

This section discusses the integration of the Fire Event Detection Module with other components within 

the SILVANUS platform, utilizing the SAL. Figure 44 illustrates the flow architecture of this integration. 

 

Figure 44. Integration flow of the Fire Event Detection Module within the SILVANUS platform 

The Fire Event Detection Module is integrated into the SILVANUS platform through the SAL, ensuring 

smooth communication with other modules. The module detects fire events from social media platforms 

and formats them into a JSON structure. This JSON contains critical metadata, including the event's location, 

time, and additional relevant details. 

Once a fire event is detected, it is forwarded to the SAL, where it enters a RabbitMQ message queue. The 

SAL serves as an intermediary that allows for the reliable delivery of fire event data to the consuming 

modules.  

The SILVANUS Visualization Dashboard is designed to consume fire events directly from the RabbitMQ 

queue within the SAL. Upon receiving a fire event, the dashboard processes the JSON data, extracting 

necessary information to visualize the event. This visualization is typically displayed as a pop-up on a map 

interface, allowing users to quickly identify and assess the location and details of the fire event. 

Simultaneously, the SILVANUS Knowledge Base also consumes fire events from the RabbitMQ queue. The 

Knowledge Base's role involves transforming the fire event data into Resource Description Framework (RDF) 

format, which is a structured and semantic representation of the data. After this transformation, the RDF 

data is stored in the Knowledge Base’s database, making it accessible for further analysis, reporting, and 

integration with other components of the SILVANUS platform [47]. 

5.2.2.5 Fire Events stored to knowledge database 

This section offers a concise update on the integration of social media posts into the Semantic Knowledge 

Base (SemKB) for subsequent utilization by other SILVANUS UP, such as UP9h. The current transformation 

to RDF and the population of the SemKB are conducted directly through the SAL, where CERTH transmits 

the data. CTL subscribes to the respective queue, consumes the data, and performs the data transformation 

as detailed comprehensively in D5.4, thereby populating the graph. 
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Figure 45. RDF Types and Object Properties. 

The backbone of a semantic knowledge graph is its RDF structure, which defines how data is stored, 

categorized, and linked. Figure 45 is part of a table listing RDF types and object properties associated with 

various entities within the SemKB. This detailed tabulation includes the RDF type (e.g., 

owl:NamedIndividual, SensoryData, TemperatureSensoryData) and the associated properties (e.g., 

causesFire, containsDetection). This information underpins the ontology-driven structure of the knowledge 

base (for more ontology related details refer to D3.1), ensuring that all data is systematically categorized 

and linked according to well-defined semantic rules. 

A chord diagram, as can been seen in Figure 46 provides a compelling overview of the interdependencies 

between various classes within the knowledge base. Each segment of the diagram represents a different 

class, such as Concept, GeoLocation, and RaspberryPiDetection. The arcs that connect these segments 

illustrate the flow of data and the relationships between different classes. This visualization not only 

captures the richness of the graph but also highlights the critical connections that enable the system to 

function as an integrated whole. It serves as a visual testament to the intricate design and thoughtful 

organization of the data architecture within the SILVANUS project. 
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Figure 46. Visualizing Interdependencies within the Knowledge Base. 

Figure 47 displays a node-link diagram representing a specific social media post in the knowledge graph. 

The central node corresponds to the unique identifier for the post (ID: 1602746121675218944). It is 

classified as an owl:NamedIndividual of type Post. Surrounding nodes include various attributes and related 

entities, such as the language (el), platform (twitter), and associated media (e.g., image). This visualization 

provides a clear depiction of how individual posts are represented and interconnected within the 

knowledge graph, highlighting the relationships between different data attributes and modules. 

 

 

Figure 47. Visualizing the social sensing ontological network. 
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SemKB builds a network of interconnected entities instead of storing isolated pieces of information. Figure 

48 showcases the broader network of connections surrounding the same social media post. In this 

expanded view, the post is linked to a range of semantic classes, such as Post, Class, and 

SocialMediaSensing. Each of these classes represents a broader category of knowledge, which helps in 

categorizing and inferring additional information from the data. This network of connections not only 

facilitates richer querying but also supports advanced inferencing, enabling the system to derive new 

insights from existing data. 

 

Figure 48. Visualizing social media in the form of graph database. 

Integrating social media data into the SemKB requires preserving the relationships and context that ensure 

a comprehensive understanding of the content. This is achieved through the structured application of the 

SILVANUS ontology, which provides a robust framework for maintaining these critical connections. Figure 

48 again illustrates how a specific tweet is represented within the knowledge graph. The central node 

corresponds to the tweet, identified by a unique ID (1602746121675218944), and acts as a hub linking 

various aspects of the post. This node is classified as an owl:NamedIndividual under the Post class, 

indicating its role as an individual social media entry. Surrounding this central node are other nodes that 

represent different attributes of the tweet, such as the language (“el” for Greek), the platform (Twitter), 

and any associated media like images. This diagram provides a clear example of how part of the tweet is 

saved in the form of RDF. It highlights the interconnected nature of the data, enabling a more detailed 

semantic understanding of the content within the knowledge graph. 

5.3 Scientific results and drawbacks 

5.3.1 Social media Crawling 

The analysis done in the Section 5.2.1.2 summarises various methods and algorithms used for ongoing 

monitoring of social media activity, especially during times of increased posting activity. It was found that 
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Isolation Forest provides the best balance of accuracy, robustness, and practicality for the specific task of 

monitoring tweet activity related to wildfires. Here we outline some limitations of the Isolation Forest 

method based on the analysis.  

The main technique involved using the Isolation Forest algorithm to identify anomalies in the post count 

data. Isolation Forest is effective at detecting outliers without needing labelled anomaly data. The algorithm 

was configured with a contamination parameter that controlled the expected proportion of anomalies in 

the dataset. Anomalies were identified based on the timestamps provided by the algorithm's output. 

One of the primary strengths of this method lies in its robustness, particularly in detecting outliers across 

diverse post patterns. Whether dealing with dense or sparse regions of the dataset, the method proved 

effective in identifying a wide range of anomalies. However, it is worth noting that the approach is 

computationally intensive and requires careful tuning of the contamination parameter to achieve optimal 

results. 

5.3.2 Textual Analysis 

HB combined the following, beyond state-of-the-art scientific ideas and insights for tool design: 

• We have employed sentence embedding based on Large Language Models (LLMs), more specifically 

the SentenceTransformers framework (see [36]), to base our content representation for ML on a 

viable semantic framework. 

• Respectively, the dimension-reduced content representation vectors were visualized in scatterplots 

together with superimposed contour maps based on Gaussian Kernel Density Estimation (KDE), 

PageRank scores, and sentiment scores (Figure 49). This was achieved by tagging tweets with their 

sentiment vs. social importance values as computed by sentiment analysis and centrality analysis. 

The resulting 3-dimensional contour maps can help the visual identification of sentiments or 

perceived importance in topical groups (clusters) of content. 

• Tool development (Figure 50) to demonstrate the above resulted in a web service module 

processing text messages as a combination of semantics, its primary factor, and perceived 

emotional/social relevance as its associated, secondary aspect. This combination resulted in 

information fusion. The fusion concept can be applied to other document genres and other media, 

i.e., our field approach to semantic content is both novel and expected to be generic. 

• By adding new topical subsets of adjective-noun bigrams, the tool can be adapted to other areas of 

disaster management, i.e., its scope is expandable. 

 

Figure 49. (left) Semantic intensity contour map of 4K tweets with 117 tweets, in red, indexed by high 

sentiment value phrases (bigrams) for comparison. Elevation corresponds to the heated nature of 

messaging. (right) Social importance contour map of 4K tweets. Elevation corresponds to the perceived 

importance (e.g., number of retweets) of messages. 



   

 

  

69 

 

 

 

Figure 50. Workflow of the ‘TweetAnalyzer for Information Fusion’ web service module. 
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Known scientific drawbacks include the following: 

• In a real-time environment social media sensing receives messages one by one in a stream, not in 

bulk as in a dataset. This means that for their clustering on the fly, some established categorial basis 

must pre-exist. We considered but did not follow up the handling of this research problem.  

• Scalability and expandability tests were unfinished. In the future, the interpretation of cluster topics 

based on maximizing their semantic coherence would be crucial for the understanding of evolving 

fire events. 

• Due to reasons of use restriction from X (Twitter), the tweets dataset provided by CERTH for 

experimentation proved to be too small with its language insufficient to achieve results beyond an 

indicative proof-of-concept level. 

• The language of the dataset was not focusing on firefighting as a critical process with well-defined 

goals, but more on political topics. Therefore, a coupling of messages about an evolving fire event 

with its respective incoming physical signals could not be accomplished but would be possible with 

better and scalable data if within reach in WP4. Applied e.g. to professional firefighting 

communication, the interpretation of event related messages could become more accurate, a 

potential dashboard component. 

• As shown in Figure 51, which contains four sets of coloured locations indicating tweets containing 

bigrams with high sentiment intensity accumulated over four updates, the red, blue, green and 

magenta dots do not sufficiently overlap with content attractors in the PageRank-based 

“landscape” of tweets. We experienced the same situation in the sentiment-based fusion 

landscape. This finding calls for the calibration of adjective-noun bigrams better tailored to 

firefighting scenarios, something that could be easily remedied with ontology and knowledge graph 

(KG) construction partners. Such conceptual fine-tuning would extract the most influential text 

words responsible for the ‘sinks’ with the most attractive ‘force’ in a fusion landscape. 

Further, in terms of the capacities of our new web service module, the following must be noticed: 

• Due to the number of requirements used, the resulting Docker is of a hefty 6 GB size at submission 

date. 

• The default export format is JSON-based, complicating import in Comma Separated Value (CSV) 

based projects. 

• The interface is a backend JSON API (albeit with a web-based Swagger interface), requiring 

implementers to know REST principles. 

• The module is designed to analyse tweet data by taking in a list of tweets; in its present form it will 

not cater well to individual tweets evaluated vs. the “existing” base. 

• The algorithms used require high amounts of computational power. 
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Figure 51. PageRank-based “landscape” of tweets, expansion phase No 4 (at 4 K): the sentiment intensity 

of marked up tweets does not overlap with the attractor structure. 

5.4 Demonstration report 

The SILVANUS dashboard (Figure 52) is a user-friendly tool designed for visualizing information about 

wildfire events. This platform integrates various data sources and layers, enabling users to monitor, analyse, 

and respond to wildfire threats effectively. 
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Figure 52. SILVANUS dashboard. 

This dashboard includes a Map Section, where fire events and related data are visually represented. The 

map provides a geographical view of the region, showing various elements such as roads, forests, and other 

key landmarks. The core functionality of the map is to consume the new fire event that exist in SAL message 

queue and display them in the map as markers. These markers indicate locations where wildfires have been 

detected or where related events are taking place. 

The Layer Section on the left side of the dashboard is crucial for customizing the map's display. This section 

allows users to filter and select various layers that represent different types of data related to wildfires. For 

instance, users can choose to display the FDI, which highlights areas with different levels of fire risk, or 

toggle on Smoke/Fire Detection, which shows places where active fires or smoke have been identified. 

Other layers might include Evacuation Route Planning, Fire Spread Simulation, or Social Media Fire Events, 

each providing specific insights that help in understanding and managing the wildfire situation. By activating 

or deactivating these layers, users can tailor the map view to focus on the most relevant information, 

enhancing their ability to make informed decisions. 

When a user clicks on a pin on the map while actively using the Social Media Fire Events layer (Figure 53), 

a new section pops up, offering detailed information about the selected fire event. This information is 

typically presented in a panel on the right side of the screen. The details provided can include an image 

related to the fire, which might be a photo uploaded by a user or captured by a monitoring device. 

Additionally, text descriptions often accompany the image, providing context such as the severity of the 

fire, actions being taken, or any relevant updates. The event's exact location is also displayed, usually with 

coordinates and a map marker, allowing for precise identification of the affected area. 
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Figure 53. Visualization example of a fire event in SILVANUS dashboard. 

Furthermore, this panel provides a timestamp, indicating when the fire was detected or when the 

information was last updated. This is crucial for understanding the progression of the event and for 

coordinating timely responses. Tags are also included, which categorize the event with keywords like 

"wildfire," "firefighters fighting," or "nearby forest," helping users quickly understand the nature of the 

event immediately. 

Overall, the SILVANUS dashboard serves as a powerful tool for visualizing wildfire event. By combining an 

interactive map with customizable data layers and detailed event information, it supports both the 

monitoring of ongoing wildfires, and the strategic planning required to mitigate their impact. This 

integration of various data points into a single, accessible platform makes it an essential resource for 

anyone involved in wildfire management and response. 
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6 UGV monitoring for wildfire behaviour 

6.1 Tool description 

The goal of this system is to create automated uncrewed ground robots capable of gathering crucial data 
on wildfire behaviour. In this reporting period, CSIRO concentrated its R&D on the development of a multi-
robot navigation using automatic map merging and place recognition. This capability allows single operators 
to oversee multiple vehicles and visualise them on the same navigation map.  

In addition, the system incorporated mobile manipulation to allow a humidity sensor to extend to the 
ground to obtain ground-level soil humidity readings. This is particularly useful for the mitigation capability, 
where the readings can calibrate wider soil moisture maps, and feed into analysis of fire spread risk prior 
to a fire. 

6.2 Innovations and updates 

In this reporting period CSIRO continued the development and assessment of UGVs to acquire information 
about forest terrain. The focus was on creating new planning systems to increase the UGVs' ability to 
autonomously navigate intricate landscapes and create a terrain map of the forest region, including the use 
of humidity sensors and improved navigation offroad. Compared to the previous period, CSIRO expanded 
testing and deployment of UGVs, using, in addition to the BIA5 ATR [55] the Boston Dynamics Spot legged 
robots. All tests were done at the Australian test pilot site, where all partners met in November 2023. The 
results have shown successful UGV navigation in unstructured terrain, such as grassy areas amid trees, 
covering significant distances. The PB5 objective was fully met during this reporting phase, with further 
details available in Task 4.5 - UGV monitoring for wildfire behaviour. 

In the demos presented by CSIRO, the ground navigation vehicle exhibited various functionalities, including 
autonomous navigation to and from the simulated wildfire frontlines by self-exploring the forest terrain. It 
autonomously transmitted data to a base station and then to a SILVANUS server via a REST interface, which 
was developed in collaboration with partner Dell. Additionally, the vehicle autonomously estimated foliage 
density, tree density and canopy coverage indices, and autonomously localized itself based on prior maps. 
The use of prior maps for navigation is not always available, but when they are, they were shown to be a 
valuable source of prior information for improved navigation. 

In addition to autonomous navigation, we developed multi-agent capabilities using new machine-learning 
based place recognition methods. These allowed us to deploy multiple UGVs simultaneously, sharing each 
other’s map information. This was demonstrated in the Australian pilot using one ATR and two-legged Spot 
vehicles, as seen in Figure 54. An example of the ATR autonomously navigating in a forested environment 
is showing in Figure 55. 
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Figure 54. Multiple UGVs demonstrating online map merging at the Australia pilot. 

 

Figure 55. The CSIRO UGV platform autonomously navigating in complex, natural terrain in the presence 

of (artificial) smoke, during a simulated mid-fire scouting operation. 
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Summary of updates: 

• Robot navigation through dense forest environments in the presence of grass and undergrowth. 

Undergrowth detection has been an important new piece of work, which allows the robot to 

penetrate the forest without treating grass and plants as an immovable obstacle. 

• Semantic segmentation of forest terrains based on ML methods. This technology provides a 

semantic label to every observed point from the vehicle’s scanning lidar. Labels include ground, 

mud, water, grass, wood and foliage. This is demonstrated in Figure 56. 

• Improved real-time forest analysis from lidar, specifically: tree density, canopy density and canopy 

coverage. We also have algorithms to estimate the full tree geometry from lidar.  

• A reporting pipeline to package and send the canopy analysis, robot pose, and camera images back 

to the base station using RF comms nodes, and then up to the SILVANUS platform. This included 

the ability to query the SILVANUS platform and display the information on a satellite view of the 

fire front area. This is demonstrated in Figure 57. 

• Mobile manipulation to allow a humidity sensor to extend to the ground to obtain ground-level soil 

humidity readings. This is particularly useful for the phase A mitigation capability, where the 

readings can calibrate wider soil moisture maps, and feed into analysis of fire spread risk prior to a 

fire. 

 

 

Figure 56. Semantic classification showing coloured point cloud (left) and predicted class labels (right). 

Data were collected during demonstrations at the Australia pilot. 
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Figure 57. Data recorded by the robot during an autonomous exploration mission at the Australia pilot. 

Records were automatically uploaded to the SILVANUS platform and can be retrieved and plotted on an 

aerial map view. Information includes location, time, and forest analytics results. 

Several of these developments began prior to M18, and so the recent work has included a large increase in 
field tests to road-test these behaviours in realistic scenarios. This has included testing the behaviours in 
the presence of smoke, moist ground, and undergrowth; and on two different classes of vehicle: tracked 
and legged. 

We also collaborated with CTL to allow their smoke detector to be placed on the moving vehicle and report 
the detection of smoke in the vehicle’s forward direction, directly to the SILVANUS platform. 

 

6.3 Scientific results and drawbacks 

We published papers on the topic of forest navigation which include: 

- ForestTrav: 3D LiDAR-only Forest traversability estimation for autonomous ground vehicles [56]. 

- Deep robust multi-robot re-localisation in natural environments [57]. 

Navigation in cluttered forest environments is an extremely complicated robotics problem and operation is 

slow. The speed issue is something that needs to be addressed in the future. Negotiating terrain and 

obstacles (sticks, branches, etc) also poses a challenge, slowing down the operation speed. 

6.4 Demonstration report 

D4.5 for CSIRO was showcased at the Australian Pilot in November 2023, which demonstrated the 

technology described above. The results above were extracted from this pilot demonstration, which was 

presented through live demos to all partners presents.  
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7 UAV deployment for remote sensing and identification of wildfire 

7.1 Tool description 

Area surveillance using unmanned remote devices is useful in wildfire management, as it allows to detect 

fire starts, monitor existing fires or map threatened surroundings without endangering human operators. 

For such missions, UAVs are equipped with sensing devices to collect informative footage for firefighters 

and other incident managers. The sensors are typically regular, high-resolution RGB cameras but can also 

include thermal cameras, Lidars or other advanced sensing technologies.  

An algorithmic toolbox to procure optimal flight plans for area surveillance by UAVs has been developed. 

The algorithmic module generates optimal sweeping trajectories based on several sensing parameters, such 

as camera shooting angle, as well as flight parameters like altitude and turning radius. 

The role of this module within the broader Integrated Fire Management Approach is illustrated in Figure 

58. It plays a crucial part during the vigilance phase, by either monitoring an ongoing incident or by 

detecting new fire starts. 

 

 

Figure 58. Place of trajectory optimization module within the integrated Fire Management approach. 

7.2 Innovations and updates 

Beyond sheer trajectory optimization improvements, much of the later research and development in T4.6 

work carried out on the trajectory optimization module focused on subarea definition, which is how you 

decompose the overall area to monitor. In particular, work was done, as illustrated below on how to handle 

zone definitions with topological holes in them or to accommodate “no-fly” zones constraints in the 

coordination algorithm services and EmerPoll system (see Figure 28). The unique feature of the approach 

is the deviation of area as we can see in the Czech pilot space. In Figure 59, the green polygon represents 

the monitored area, and the red polygon represents the no-fly zone. The results of the planned two paths 

for drones are shown in Figure 60. For illustration, we tried the algorithm in the Romanian pilot area. The 

monitoring area (white polygon) was intentionally enlarged (green polygon) so that we could use more 

drones. The results of the planned five paths for drones are shown in Figure 61. The result of the distribution 

of flight paths when applying the no-fly zone can be seen in Figure 62. 
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Figure 59. Monitored area for Czech pilot, green polygon represents the monitored area, and red polygon 

represents no-fly zone. 

  

Figure 60. Results of drone path generation for two drones in Czech pilot. 

  

Figure 61. Results of drone path generation for five drones in Romania pilot. Dashboard visualization and 

visualization in Google earth pro. 
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Figure 62. Results of drone path generation for five drones in Romania pilot with non-fly zone. Individual 

path or polygon. 

7.3 Scientific results and drawbacks 

The output of the tool is a fully functional coordination and trajectory optimization module for UAV fleets. 

This component effectively solves the underlying mathematical optimization problems to generate full 

mission plans, including area coverage and optimal path computation in a sufficiently rapid manner to 

facilitate agile “re-planning” of surveillance missions. In addition to the primary tabletop simulation-based, 

which utilizes real data, several real-world test flights were conducted to confirm that this technology can 

be effectively employed under suitable natural conditions. Ongoing work as part of WP9 and upcoming 

pilot projects aims to enhance the module’s robustness and ease of use while also addressing decentralized 

coordination as a longer-term perspective. 

7.4 Demonstration report 

Besides the numerous demonstrations conducted during project meetings and reviews, the module was 

utilized to compute and demonstrate trajectories during the tabletop exercises of the Italian Gargano Park 

pilot and the Greek pilot in fall of 2023. More recently, several actual test flights were carried out in the 

field during the 2024 edition of the Czech pilot in Krasna. 

More specifically, the drone’s image collection and aggregation capabilities as well as ingestion to SAL from 

the FCC were tested on-site (Figure 63 a). Multiple trajectories were generated to monitor the selected 

incident site using two different algorithms by UISAV and TRT. The image below shows the results of two 

optimally planned drone routes (Figure 63 b) which were computed at the FCC. The drones had to operate 

at different altitudes (levels) (120 and 110 m above sea level) due to national safety requirements. The 

second photo (Figure 63 c) shows a drone controller with loaded data generated and prepared in the prior 

step. Based on this data two parallel drone missions were launched using two distinct drones. The final 

image (Figure 63 d) shows the result of stitching process of partial images collected and aggregated from 

the planned drone flights. 
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a) Preparations for the mission at the 
pilot site (UISAV, TRT, 3MON, 

HZSCR). 

 
b) Trajectories of optimal planned drone 
routes in KML-format precomputed and 

prepared for drone pilots.  
 

 
 

c) KML-formatted drone route prepared 
and loaded to the drone controller before 

the flight. 
 

 
 

d) Result of the drone image stitching 
from two independent drone flights. 

Figure 63. UAV drone flight data collection preparation, execution and aggregation at the Czech pilot site. 
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8 Conclusion 

This deliverable summarizes the final implementation status at M36 of the various SILVANUS components 

for the ingestion, aggregation and pre-processing of heterogeneous data sources, including Satellite EOs, 

weather and climate data, in-situ IoT devices, social media sensing, UGVs and UAVs, and their integration 

into the SILVANUS platform. These integrated components provide advanced capabilities for fire detection. 

The deliverable also outlines the limitation and drawbacks encountered during the development and 

testing phases, as well as how these capabilities support the demonstration activities in WP9. These 

components are considered the backbone of the SILVANUS application and services and will be fully utilized 

in the SILVANUS Pilot sites in the coming months. This demonstrative phase of the SILVANUS system’s 

capabilities will be extensively tested to gather feedback on the various developed components from users 

and stakeholders. 
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