

D8.4 - SILVANUS platform

release, 2nd version

Project Acronym SILVANUS

Grant Agreement number 101037247 (H2020-LC-GD-2020-3)

Project Full Title Integrated Technological and Information Platform for
Wildfire Management

Funding Scheme IA – Innovation action

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 101037247

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 2 | 78

DELIVERABLE INFORMATION

Deliverable Leader: INTRA

Lead Author(s) Despina Anastasopoulos, Nelly Leligou, Fanis Orphanoudakis,
Sofia Tsekeridou (INTRA)

Reviewers RINI, CSIRO, UISAV

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 101037247

Deliverable Number: D8.4

Deliverable Name: Report on SILVANUS final reference architecture

Dissemination level: PU

Type of Document: Demo

Contractual date of delivery: 31/05/2024 (M32)

Date of submission: 03/06/2024

Deliverable Leader: INTRA

Status: Final

Version number: V0.4

WPLeader/ TaskLeader: INTRA/INTRA, UISAV, FINC

Keywords Integration, SILVANUS system

Abstract The current document describes the components that have been
comprise the SILVANUS system and provides evidence of the
integration activities. It accompanies the software code that has
been produced and maintained in the SILVANUS Github
repository which represents the 2nd version /release of SILVANUS
developments.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 3 | 78

Disclaimer

All information in this document is provided “as is” and no guarantee or warranty is given that

the information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. For the avoidance of all

doubts, the European Commission has no liability in respect of this document, which is merely

representing the authors' view.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 4 | 78

Document History

Version Date Contributor(s) Description

V0.1 04.3.2024 INTRA ToC

V0.2 15/5/2024 INTRA, DELL, CTL,
ATOS, AMIKOM,
CERTH, MGS, HB,
RINICOM, VTG,
CMCC, WUT, SIMAVI,
UISAV

Contributions to all chapters and
integration by INTRA

V0.3 23/5/2024 INTRA, DELL, CTL,
ATOS, AMIKOM,
CERTH, MGS, HB,
RINICOM, VTG,
CMCC, WUT, SIMAVI,
UISAV

Contributions to all chapters and
integration by INTRA

V0.4 30/5/2024 INTRA
Revisions based on the comments from
the internal and quality reviewers

V1.0 31.5.2024 PEGASO, VTG
Consolidated final deliverable release
ready for the submission

V1.1 02/08/2024 INTRA
Revisions following the comments of the
reviewers

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 5 | 78

List of beneficiaries

No Partner Name
Short
name

Country

1 UNIVERSITA TELEMATICA PEGASO PEGASO Italy

2 ZANASI ALESSANDRO SRL Z&P Italy

3 NETCOMPANY-INTRASOFT SA INTRA Luxembourg

4 THALES TRT France

5 FINCONS SPA FINC Italy

6 ATOS IT SOLUTIONS AND SERVICES IBERIA SL ATOS IT Spain

6.1 ATOS SPAIN SA ATOS SA Spain

7 EMC INFORMATION SYSTEMS INTERNATIONAL DELL Ireland

8 SOFTWARE IMAGINATION & VISION SRL SIMAVI Romania

9
CNET CENTRE FOR NEW ENERGY TECHNOLOGIES
SA

EDP Portugal

10 ADP VALOR SERVICOS AMBIENTAIS SA ADP Portugal

11
TERRAPRIMA - SERVICOS AMBIENTAIS SOCIEDADE
UNIPESSOAL LDA

TP Portugal

12 3MON, s. r. o. 3MON Slovakia

13 CATALINK LIMITED CTL Cyprus

14
SYNTHESIS CENTER FOR RESEARCH AND
EDUCATION LIMITED

SYNC Cyprus

15 EXPERT SYSTEM SPA EAI Italy

16 ITTI SP ZOO ITTI Poland

17 Venaka Treleaf GbR VTG Germany

18 MASSIVE DYNAMIC SWEDEN AB MDS Sweden

19
FONDAZIONE CENTRO EURO-MEDITERRANEOSUI
CAMBIAMENTI CLIMATICI

CMCC F Italy

20
EXUS SOFTWARE MONOPROSOPI ETAIRIA
PERIORISMENIS EVTHINIS

EXUS Greece

21 RINIGARD DOO ZA USLUGE RINI Croatia

22 Micro Digital d.o.o. MD Croatia

23 POLITECHNIKA WARSZAWSKA WUT Poland

24 HOEGSKOLAN I BORAS HB Sweden

25 GEOPONIKO PANEPISTIMION ATHINON AUA Greece

26
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS
ANAPTYXIS

CERTH Greece

27 PANEPISTIMIO THESSALIAS UTH Greece

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 6 | 78

No Partner Name
Short
name

Country

28
ASSOCIACAO DO INSTITUTO SUPERIOR TECNICO
PARA A INVESTIGACAO E
DESENVOLVIMENTO

IST Portugal

29 VELEUCILISTE VELIKA GORICA UASVG Croatia

30
USTAV INFORMATIKY, SLOVENSKA AKADEMIA
VIED

UISAV Slovakia

31 POMPIERS DE L'URGENCE INTERNATIONALE PUI France

32 THE MAIN SCHOOL OF FIRE SERVICE SGPS Poland

33
ASSET - Agenzia regionale Strategica per lo
Sviluppo Ecosostenibile del Territorio

ASSET Italy

34 LETS ITALIA srls LETS Italy

35 Parco Naturale Regionale di Tepilora PNRT Italy

36 FUNDATIA PENTRU SMURD SMURD Romania

37 Romanian Forestry Association - ASFOR ASFOR Romania

38 KENTRO MELETON ASFALEIAS KEMEA Greece

39 ELLINIKI OMADA DIASOSIS SOMATEIO HRT Greece

40 ARISTOTELIO PANEPISTIMIO THESSALONIKIS AHEPA Greece

41 Ospedale Israelitico OIR Italy

42 PERIFEREIA STEREAS ELLADAS PSTE Greece

43
HASICSKY ZACHRANNY SBOR
MORAVSKOSLEZSKEHO KRAJE

FRB MSR Czechia

44 Hrvatska vatrogasna zajednica HVZ Croatia

45 TECHNICKA UNIVERZITA VO ZVOLENE TUZVO Slovakia

46 Obcianske zdruzenie Plamen Badin PLAMEN Slovakia

47 Yayasan AMIKOM Yogyakarta AMIKOM Indonesia

48
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL
RESEARCH ORGANISATION

CSIRO Australia

50
FUNDACAO COORDENACAO DE PROJETOS
PESQUISAS E ESTUDOS TECNOLOGICOS COPPETEC

COPPETEC Brazil

51 Rinicom Ltd RINICOM UK

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 7 | 78

TABLE OF CONTENTS

TABLE OF CONTENTS ... 7

TABLE OF FIGURES .. 9

LIST OF TABLES ... 10

LIST OF ACRONYMS ... 11

EXECUTIVE SUMMARY ... 13

1 Introduction .. 14

1.1 Component summary template .. 14

1.2 Components’ summary ... 14

2 Integration environment ... 38

2.1 Software repository and development flow .. 38

2.2 GitHub based CI/CD ... 39
2.2.1 Docker .. 39
2.2.2 GitHub Actions ... 40
2.2.3 Flux CD .. 42

2.3 SILVANUS Data Ingestion, Storage and Retrieval ... 43
2.3.1 Component Details ... 44
2.3.2 User Product Endpoints.. 46
2.3.3 Demonstrations .. 47
2.3.4 Update Function ... 55
2.3.5 Delete on Demand ... 55

2.4 SILVANUS platform cloud infrastructure ... 56

3 Conclusions ... 64

4 References ... 65

Appendix 1. Example of integration workflow ... 66

Repository Structure ... 66

Dockerfile ... 66

Kubernetes Manifest .. 66
Deployment ... 66
Service .. 67
Ingress .. 67

CI/CD Pipelines ... 68

Repository Secrets .. 68

CI with GitHub Actions ... 69

CD with Flux.. 71
Git Repository .. 71
Image Repository ... 72

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 8 | 78

Image Policy ... 72
Image Update Automation .. 73
Kustomization .. 74
Summary .. 75

Appendix 2. Example Kubernetes Config Files .. 77

Template File .. 77

Variables Details .. 78

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 9 | 78

TABLE OF FIGURES

FIGURE 1: GITHUB CONTINUOUS INTEGRATION SCHEMA ... 39
FIGURE 2: ABSTRACTION TECHNOLOGIES - CONTAINERS VS. VMS [13] .. 39
FIGURE 3: GITHUB ACTIONS [11] .. 41
FIGURE 4 WORKFLOW RUNS ... 41
FIGURE 5: JOB RUN DETAILS .. 42
FIGURE 6: FLUX BASIC FLOW [14] .. 42
FIGURE 7: THE INTERACTION BETWEEN SAL AND OTHER COMPONENTS IN SILVANUS PLATFORM 45
FIGURE 8: METADATA VALIDATION ... 45
FIGURE 9: THE FLOWCHART OF DATA AND METADATA DEDUPLICATION .. 46
FIGURE 10: DATA AND METADATA DUPLICATION CHECK ... 46
FIGURE 11: DRONE IMAGE CAPTURE DURING MISSION .. 47
FIGURE 12: METADATA DESCRIPTOR FOR DRONE CAPTURE – (SILVANUS METADATA JSON-FORMAT-V2.2) 48
FIGURE 13: INGESTION REQUEST CONTAINING DATA OBJECT & METADATA DESCRIPTOR FROM DATA PROVIDER........... 49
FIGURE 14:DATA INGESTION TO SAL AND RABBITMQ ... 51
FIGURE 15:RETRIEVAL OF DATA FROM MESSAGE QUEUES .. 52
FIGURE 16: THE FORMAT OF ADDED FILED TO THE METADATA TO ENABLE CCP USING NIFI JOLTTRANSFORMJSON

PROCESSOR ... 53
FIGURE 17: THE WORKFLOW FOR THE DATA RETRIEVAL SOLUTION ... 53
FIGURE 18: QUERY FORMAT .. 53
FIGURE 19: AN EXAMPLE OF QUERY RESULTS .. 54
FIGURE 20: FILE DOWNLOAD REQUEST EXAMPLE ... 54
FIGURE 21: NUMBER OF MESSAGES INSIDE A QUEUE .. 55
FIGURE 22:DELETE ON DEMAND METADATA .. 55
FIGURE 23: DELETE ON DEMAND DATA. .. 55
FIGURE 24: DATA MARKED WITH UUID FLAG ... 56
FIGURE 25: SILVANUS HOSTED CLOUD INFRASTRUCTURE (STAGING AND PRODUCTION KUBERNETES CLUSTERS) 56
FIGURE 26: PFSENSE DASHBOARD... 57
FIGURE 27: A) KUBERNETES NODES OF THE STAGING CLUSTER AND B) THE NAMESPACES ON THEM 58
FIGURE 28: SNAPSHOT OF THE SILVANUS PLATFORM MONITORING A) PODS, B) DEPLOYMENTS, C) INGRESS RESOURCES,

D) AND WORKLOADS. .. 60
FIGURE 29: SNAPSHOT OF PERSISTENT VOLUME CLAIMS (PVCS) ON THE SILVANUS CLUSTER. 61
FIGURE 30: MONITORING INSTANCE OF MINIO OBJECT STORE ON THE SILVANUS CLUSTER. 62
FIGURE 31: A) SILVANUS CLUSTER PERFORMANCE METRICS MONITORED AND B) SILVANUS VPN NETWORK STATICS ON

GRAFANA .. 63
FIGURE 32: STAGING CI/CD ... 68
FIGURE 33: PRODUCTION CI/CD ... 68
FIGURE 34 REPOSITORY SECRETS .. 69

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 10 | 78

LIST OF TABLES

TABLE 1: COMPONENT INFORMATION ... 14
TABLE 2: DESCRIPTION OF THE FIRE DANGER TOOL API .. 14
TABLE 3: DESCRIPTION OF TWITTER CRAWLER COMPONENT .. 15
TABLE 4: DESCRIPTION OF VISUAL CONCEPT EXTRACTION MODULE .. 15
TABLE 5: DESCRIPTION OF LOCATION EXTRACTION MODULE .. 16
TABLE 6: DESCRIPTION OF RELEVANCE ESTIMATION MODULE .. 17
TABLE 7: DESCRIPTION OF WILDFIRE EVENTS DETECTION MODULE ... 17
TABLE 8: DESCRIPTION OF SOCIAL MEDIA SENSING IMAGE FILTERING MODULE .. 18
TABLE 9: DESCRIPTION OF FIRE AND SMOKE DETECTION AND LOCALIZATION IN IMAGES MODULE 18
TABLE 10: DESCRIPTION OF RESOURCE ALLOCATION OF RESPONSE TEAMS (RART) ... 19
TABLE 11: DESCRIPTION OF FIRE AND SMOKE DETECTION IN IMAGES ON THE EDGE MODULE 20
TABLE 12: DESCRIPTION OF TERRAIN SEGMENTATION FROM SATELLITE MODULE ... 20
TABLE 13: DESCRIPTION OF TERRAIN SUPER RESOLUTION FOR SATELLITE IMAGES MODULE 21
TABLE 14: DESCRIPTION OF THE MODULE FOR DETECTION OF FIRE AND FIRE RELATED INFO FROM SOCIAL MEDIA USING CLIP

 ... 21
TABLE 15: DESCRIPTION OF THE MODULE FOR QUESTIONS AND ANSWERS FROM SOCIAL MEDIA 22
TABLE 16: DESCRIPTION OF THE MODULE FOR GEOLOCATION BASED ON IMAGES IN SOCIAL MEDIA 22
TABLE 17: DESCRIPTION OF THE FIRE SPREAD MODEL .. 23
TABLE 18: DESCRIPTION OF GEO-LOCATION COMPONENT ... 23
TABLE 19: DESCRIPTION OF IMAGE ANALYTICS COMPONENT .. 24
TABLE 20: DESCRIPTION OF MACHINE LEARNING COMPONENT FOR RECOGNITION OF TREES BASED ON LEAVES’ IMAGES .. 24
TABLE 21: DESCRIPTION OF DATA ANNOTATION COMPONENT .. 25
TABLE 22: DESCRIPTION OF DATA AGGREGATION COMPONENT .. 25
TABLE 23: DESCRIPTION OF WOODE USER-SIDE MOBILE APPLICATION COMPONENT ... 26
TABLE 24. DESCRIPTION OF SILVANUS SEMANTIC KNOWLEDGE BASE .. 26
TABLE 25: DESCRIPTION OF THE DATA FUSION APPLICATION ... 27
TABLE 26 : EVACUATION ROUTE PLANNING.. 27
TABLE 27: DESCRIPTION OF THE HEALTH IMPACT COMPONENT .. 28
TABLE 28: DESCRIPTION OF CITIZEN ENGAGEMENT APP.. 29
TABLE 29: DESCRIPTION OF BACKEND SERVICES FOR THE CITIZEN ENGAGEMENT MOBILE APP’S (CEA) 29
TABLE 30: DESCRIPTION OF THE BACKEND SERVICE OF THE CITIZEN ENGAGEMENT MOBILE APP 30
TABLE 31: DESCRIPTION OF THE STORAGE ABSTRACTION LAYER ... 31
TABLE 32: DESCRIPTION OF THE DATA INGESTION PIPELINE ... 31
TABLE 33: DESCRIPTION OF OPENSTREETMAP CONVERSION MODULE ... 32
TABLE 34: DESCRIPTION OF SENTINEL DERIVED INDICES .. 33
TABLE 35: DESCRIPTION OF SILVANUS METADATA EXTRACTOR ... 33
TABLE 36: DESCRIPTION OF SILVANUS SECURITY SERVER .. 34
TABLE 37: DESCRIPTION OF UI FRAMEWORK .. 34
TABLE 38: DESCRIPTION OF ROBOT NAVIGATION AND MAPPING MODULE ... 35
TABLE 39: MESH IN THE SKY ... 36
TABLE 40: DESCRIPTION OF THE SOCIAL MEDIA APPLICATION .. 36
TABLE 41: DESCRIPTION OF KUBEFLOW PIPELINE COMPONENT FACTORY ... 37
TABLE 42: USER PRODUCTS ENDPOINTS .. 47
TABLE 43: THE RABBITMQ QUEUES ... 49

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 11 | 78

LIST OF ACRONYMS

ACRONYM DESCRIPTION

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

A&A Authentication and authorisation

BDF Big Data Framework

BS BACKEND SERVICES

CA Certificate Authority

CASPAR Structured Data Semantic Exploitation Framework

CCP Claim Check Pattern

CI/CD Continuous Integration/Continuous Development

CPU Central Processing Unit

CRL Certificate Revocation List

DAG Directed Acyclic Graph

DBMS Database Management System

DEM Digital Elevation Model

DEVOPS Development and Operations

DL Deep Learning

DOA Description of Action

DSL Domain-Specific Language

DSS Decision Support System

DTLS Datagram Transport Layer Security

ECMWF European Centre for Medium-Range Weather Forecasts

ECS Elastic Cloud Storage

EMDC Edge Micro Data Centre

ETL Extract, Transform, Load

FaaS Function as a Service

FCC Forward Command Centre

FiFo First in First out

FWI Fire Weather Indices

GIS Geographic Information System

GPS Global Positioning System

GRIB General Regularly distributed Information in Binary form

GW Gateway

IoT Internet of Things

JSON JavaScript Simple Object Notation

KPA Knative Pod Autoscaling

KPI Key Performance Indicator

MIME Multipurpose Internet Mail Extensions

ML Machine Learning

MVP Minimum Viable Product

NDVI Normalised Difference Vegetation Index

NetCDF Network Common Data Form

PKI Public Key Infrastructure

PMAS Poll Management and Aggregation Service

PS Pilot Site

RAM Random Access Memory

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 12 | 78

RART Resource Allocation of Response Teams

RDF Resource Description Framework

REST Representational state transfer

RoI Region of Interest

ROS Robot Operating System

SAFE Standard Archive Format for Europe

SAL Storage Abstraction Layer

SAR SYNTHETIC APERTURE RADAR

SCM Source Code Management

SDR Software Defined Radio

SLP Sea Level Pressure

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

TLS Transport Layer Security

UAV Unmanned Aerial Vehicle

UC Use Case

UGV Unmanned Ground Vehicle

UxVs UAV and UGV

UI User Interface

UP User Product

VM Virtual Machine

VR Virtual Reality

WMO World Meteorological Organisation

WRF Weather Research and Forecasting Model

XR Extended Reality

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 13 | 78

EXECUTIVE SUMMARY

D8.4 is the 4th deliverable of WP8 which essentially represents the second iteration of the

platform. This platform is ready for piloting and it consists of the components described in

D8.3 which are required to deliver the functionalities of the user products defined in D8.3,

with the exceptions of a) components that are implemented under the Open Forest Map and

b) components that mainly intend to perform lightweight processing and visualise indices

which will be reported in the next release under D8.5. It should be stressed that while in the

initial DoA the current deliverable was foreseen for M36, in the amendment the deadline

became M32. This decision was based on the needs of the pilots to have the platform ready

before summertime (in Europe).

This deliverable is of type demonstrator and thus, for each platform component, it provides a

short summary, and it points to the relevant location in the SILVANUS GitHub where the

software code of the different components and additional information regarding, e.g., the

testing and validation of the components also exist.

It is important to note that:
a) A significantly higher number of components has been integrated in the 2nd version

to meet as many user requirements as possible and
b) For those components that were included in the 1st version of the platform, the

differences in functionality are described in D8.3 (delivered March 2024).

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 14 | 78

1 Introduction

1.1 Component summary template
In this deliverable which is of type “demonstrator”, a summary of information per component

included in the SILVANUS platform – version 2 is provided, while further details are provided

in the project’s GitHub. The template of the presentation of each component is shown in the

Table 1, below.

Table 1: Component Information

Title This field holds the name
of the SILVANUS
component

WP This field holds the WP that
the component belongs

Description/
Functionality

This field holds the component's operation description and additional
information associating this with the relevant service in D8.3.

Repository URL The absolute URL of the component's location in the Silvanus GitHub,
if this is made publicly available

Integration
component list

This field holds the components list that this component interoperates
and will integrate with. The number of components in the list can be
0 (if standalone) or other positive value

Deployment
location

This field holds deployment location in the Silvanus Cloud, if applicable

Container size If the component is containerized, then it provides the size of the
Container

Requirements This field holds computational requirements for this component, e.g.
CPU, RAM, STORAGE requirements of the component.

Contact email This field holds the email of the developer of the component.

1.2 Components’ summary
This section includes the summary of the components currently deployed.

It is worth stressing that in the following tables (Table 2 to Table 41) components that are

relevant to services that will be delivered to the users in the 2nd version of the platform are

also described. Some of them are already deployed in the SILVANUS cloud and some others

are running on infrastructures owned by the consortium partners.

Table 2: Description of the Fire Danger Tool API

Title Fire Danger Tool API WP WP4, WP5

Description/
Functionality

It implements a REST API service that provides information about

- Daily Fire Weather Index based on the Canadian FWI

- Weather forecast for the next 72 hours

- ML-based Fire Danger Index

Relevant to BS1 in D8.3

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 15 | 78

Repository URL https://github.com/CMCC-Foundation/fire_danger_tool

Integration
component list

The product integrates with SAL for querying data and to the
dashboard for displaying the fire danger index map for pilot region.

Deployment
location

CMCC on-premises facilities, Silvanus DockerHub, Silvanus cluster

Container size 4GB

Requirements The API is based on Python
CPU: 4 cores
MEM: 8GB
DISK: 25GB

Contact email gabriele.accarino@cmcc.it, shahbaz.alvi@cmcc.it

Table 3: Description of Twitter Crawler component

Title Twitter Crawler WP WP4-T4.4

Description/

Functionality

Collects tweets related to wildfires in almost real time from Twitter API based

on various search criteria (keywords, accounts)

Relevant to BS2 (in D8.3)

Repository URL UP3

Integration

component list

Knowledge Base, Dashboards, Fire Events Detection

Deployment

location

CERTH server

Container size 1GB

Requirements Python 3.9
Python libraries:
tweepy==4.10.1
regex==2021.4.4
python-dateutil==2.8.1
pandas==1.2.5
asyncio==3.4.3
DateTime==4.3
requests==2.28.1
urllib3==1.26.6
pymongo==4.2.0
aiohttp==3.8.3

Contact email arbozas@iti.gr, kouloglou@iti.gr, heliasgj@iti.gr

Table 4: Description of Visual Concept Extraction Module

Title Visual Concept

Extraction Module

WP WP4-T4.4

mailto:marco.mancini@cmcc.it

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 16 | 78

Description/

Functionality

Accepts a URL of an image as input and returns the top 10 concepts that

define the image the best from 186 predefined concepts.

Relevant to BS2 (in D8.3)

Repository URL https://github.com/silvanus-prj/Visual-Concept-Extraction-Module

Integration

component list
This module is one of the services used in T4.4 for social media

detection (UP3)

Deployment

location

CERTH server

Container size 12GB

Requirements Python 3.9
Python libraries:
regex==2021.4.4
python-dateutil==2.8.1
pandas==1.2.5
flask==3.4.3
DateTime==4.3
requests==2.28.1
urllib3==1.26.6
pymongo==4.2.0
aiohttp==3.8.3

Contact email arbozas@iti.gr, kouloglou@iti.gr, heliasgj@iti.gr

Table 5: Description of Location Extraction Module

Title Location Extraction Module WP WP4-T4.4

Description/

Functionality

Accepts a text of a social media post, detects with NER tagging the placename

found in text. Pushes these placenames to OpenStreetMap and takes the

precise coordinates of these place names. Finally, it returns the location with

coordinates found in the text in JSON format.

This module works for English, Italian, German, French, Greek, Dutch, Finnish,

Spanish languages.

Relevant to BS2 (in D8.1)

Repository URL https://github.com/silvanus-prj/Location-Extraction-Module

Integration

component list
This module is one of the services used in T4.4 for social media detection

(UP3)

Deployment

location

CERTH server

Container size 32GB

Requirements Python 3.9
Python libraries:
flair==0.11.3
Flask==2.1.1
requests==2.27.1
transformers==4.18.0

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 17 | 78

Unidecode==1.3.4
protobuf==3.19.4
gr-nlp-toolkit==0.0.3

Contact email arbozas@iti.gr, kouloglou@iti.gr, heliasgj@iti.gr

Table 6: Description of Relevance Estimation Module

Title Relevance Estimation

Module

WP WP4-T4.4

Description/

Functionality

Accepts a text of a social media post and returns if the post text refers to fires.

Relevant to BS2 (in D8.3)

Repository URL https://github.com/silvanus-prj/Relevance-Estimation-Module

Integration

component list
This module is one of the services used in T4.4 for social media

detection (UP3)

Deployment

location

CERTH server

Container size ~32GB

Requirements Python 3.9
Python libraries:
scikit-learn==1.3.0
python-dateutil==2.8.2
pandas==2.1.4
tensorflow==2.13.1
keras==2.13.1
simpletransformers==0.64.3

Contact email arbozas@iti.gr, kouloglou@iti.gr, heliasgj@iti.gr

Table 7: Description of Wildfire Events Detection Module

Title Fire Events detection WP WP4-T4.4

Description/

Functionality
Consumes social media posts from Twitter, Facebook and Web crawlers and

detect fire event found in these posts.

Relevant to BS2 (in D8.3)

Repository URL https://github.com/silvanus-prj/Wildfire-Events-Detection-Module

Integration

component list
This module is one of the services used in T4.4 for social media

detection (UP3)

Deployment

location
Silvanus cloud

Container size ~6GB

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 18 | 78

Requirements Python 3.9
Python libraries:
pandas==1.2.5
Haversine == 1.1.0
pymongo==4.2.0
requests==2.27.1

Contact email arbozas@iti.gr, kouloglou@iti.gr, heliasgj@iti.gr

Table 8: Description of Social media sensing image filtering Module

Title Social media sensing
image filtering

WP WP4-T4.4

Description/
Functionality

REST API that accepts image URLs as input, processes them with ML
algorithms to return the probability of each image depicting
irrelevant/unwanted content (e. g., contain inappropriate content).

Relevant BS2 in D8.3

Repository URL https://github.com/silvanus-prj/social-media-sensing-image-filtering

Integration
component list

This module is one of the services used in T4.4 for social media
detection (UP3)

Deployment
location

Catalink Server

Container size ~10GB

Requirements Python3 and Python3 libraries (e.g., tensorflow, opennsfw2, opencv).

STORAGE: ~15-20MB (~ maximum 5 images per request, of 3MB each,
totaling in 15MB with some additional space for the output files)

Contact email maria.maslioukova@catalink.eu, vangelis.mathioudis@catalink.eu

Table 9: Description of Fire and Smoke Detection and Localization in Images Module

Title Fire and Smoke Detection
and localization in Images

WP WP4/WP5

Description/
Functionality

REST API that checks image URLs or images with metadata (from SAL
or edge devices) whether they contain fire and smoke. For the SAL
endpoint it additionally marks the fire’s location within the image,
using superpixels. The ML detection algorithms are the same ones
used in the IoT for fire detection (UP4a).

Information about UP4a Fire detection from IoT devices can be found
here: https://github.com/silvanus-prj/fire-and-smoke-detection-
edge-ctl

Relevant to BS2, BS3 and BS14 in D8.3.

Repository URL https://github.com/silvanus-prj/fire-and-smoke-detection-ctl

mailto:maria.maslioukova@catalink.eu
https://github.com/silvanus-prj/fire-and-smoke-detection-edge-ctl
https://github.com/silvanus-prj/fire-and-smoke-detection-edge-ctl
https://github.com/silvanus-prj/fire-and-smoke-detection-ctl

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 19 | 78

Integration
component list

NiFi/SAL, Social Media Sensing (UP3), Edge devices (e.g., EMDCs),
SILVANUS Dashboard

Deployment
location

Catalink servers

Container size ~15GB for each detection algorithm (so ~30GB in total)

Requirements Python3 and Python3 libraries (e.g., tensorflow, opencv).
CPU: full utilisation of the available cores (suggested is a minimum of
4 cores)
RAM: ~3.5GB
STORAGE: ~15-20MB (~ maximum 5 images per request, of 3MB each,
totalling in 15MB with some additional space for the output files)

Contact email maria.maslioukova@catalink.eu, georgiach@catalink.eu,
nikolas.petrou@catalink.eu, vangelis.mathioudis@catalink.eu

Table 10: Description of Resource Allocation of Response Teams (RART)

Title UP9.a – Resource Allocation
of Response Teams (RART)

WP WP5

Description/
Functionality

This is the Decision Support System (DSS) algorithm for the resource
allocation of firefighter units in the field.

Repository URL https://github.com/silvanus-prj/resource-allocation

Integration
component list

SAL, FSM, dashboard

Deployment
location

Silvanus cloud

Simulation URL: https://resource-allocation.platform.silvanus-
project.eu/

Container size 2.5GB

Requirements RAM 32GB, CPU core i7
GDAL Ubuntu Base Image
Libraries:
gdal
pika
requests
nested_lookup
rasterio
shapely
geopandas
matplotlib
ortools
boto3
wget
geojson
celery

mailto:georgiach@catalink.eu

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 20 | 78

Contact email Theofanis.Orphanoudakis@netcompany.com,
Nelly.LELIGOU@netcompany.com

Table 11: Description of Fire and Smoke Detection in Images on the Edge Module

Title Fire and Smoke Detection
in Images on the Edge

WP WP4

Description/
Functionality

This user product detects the presence of fire and smoke in images or
videos. The images are taken by UxVs (UAV and UGV) and ingested
into the system using the SAL. From the UxVs, the images are sent via
“mesh-in-the-sky" or downloaded when the UxV arrive to the Ground
Station. The user product reads the images using Rabbit MQ and
analyses the images in “soft” real time using computer vision
algorithms (ML algorithms) to detect fire and smoke. The result is sent
via Rabbit MQ to be displayed in the user dashboard. The analysis is
made in the “edge” devices, that is, high-end computers with usually
GPU-like capabilities.

Part of BS4 in D8.3.

Repository URL https://github.com/silvanus-prj/fire-and-smoke-detection-Atos

Integration
component list

This componehnt integrates with UP4b

Deployment
location

Edge devices

Container size No container use is foreseen.

Requirements Python3 and Python3 libraries (e.g., Pytorch, ultralytics, opencv). High
demand of computer power on the device. Use of GPU if available.

Contact email jose.martinezs@eviden.com

Table 12: Description of Terrain segmentation from Satellite Module

Title Terrain segmentation from
satellite

WP WP4-WP5

Description/
Functionality

This module produces segmentation of the terrain using satellite
images as source

Part of BS4 in D8.3.

Repository URL https://github.com/silvanus-prj/terrain-segmentation-and-super-
resolution (No code in the repo for internal policy reasons, only
readme uploaded)

Integration
component list

This module is part of the tools created in WP4 for satellite using AI.
The produced data can be (are) used from multiple other components
of SILVANUS platform.

mailto:Theofanis.Orphanoudakis@netcompany.com
mailto:Nelly.LELIGOU@netcompany.com

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 21 | 78

Deployment
location

https://github.com/silvanus-prj/terrain-segmentation-and-super-
resolution

Container size 24,2 Gb virtual, 9.18Mb

Requirements Python environment in a computer with GPU capability

Contact email jose.martinezs@eviden.com

Table 13: Description of Terrain super resolution for Satellite Images Module

Title Terrain super-resolution
for satellite images

WP WP4-WP5

Description/
Functionality

This module improves the quality of the images using satellite images
as source

Part of BS4 in D8.3.

Repository URL https://github.com/silvanus-prj/terrain-segmentation-and-super-
resolution (No code in the repo for internal policy reasons (model
trained by us); only readme uploaded)

Integration
component list

This module is part of the tools created in WP4 for satellite using AI
and is integrated with the fire danger prediction component.

Deployment
location

https://github.com/silvanus-prj/terrain-segmentation-and-super-
resolution

Container size 44.1 Gb virtual, 341kb

Requirements Python environment in a computer with GPU capability

Contact email jose.martinezs@eviden.com

Table 14: Description of the module for Detection of fire and fire related info from social media using CLIP

Title Detection of fire and fire
related info from social
media using CLIP

WP WP4 (T4.4)

Description/
Functionality

This module detects fire and related information using text and
images combined

Part of BS4 in D8.1.

Repository URL https://github.com/silvanus-prj/social-media-data-extractor-from-
Atos

Integration
component list

This module is part of the tools of T4.4 for social media detection, and
thus integrated with UP3

Deployment
location

https://github.com/silvanus-prj/social-media-data-extractor-from-
Atos

Container size No dockerization required (access using REST API)

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 22 | 78

Requirements Python environment in a computer with GPU capability

Contact email jose.martinezs@eviden.com

Table 15: Description of the module for Questions and answers from social media

Title Questions and answers
from social media

WP WP4 (T4.4)

Description/
Functionality

This module generates information about fire from social media using
open questions (e.g.”is there fire in the image?”)

Relevant to BS4 in D8.3.

Repository URL https://github.com/silvanus-prj/social-media-data-extractor-from-
Atos

Integration
component list

This module is part of the tools of T4.4 for social media detection UP3

Deployment
location

https://github.com/silvanus-prj/social-media-data-extractor-from-
Atos

Container size No dockerization required (access using REST API)

Requirements Python environment in a computer with GPU capability

Contact email jose.martinezs@eviden.com

Table 16: Description of the module for GeoLocation based on images in social media

Title GeoLocation based on
images in social media

WP WP4 (4.4)

Description/
Functionality

This module provides information about the place where a photo has
been taken (as an estimation), thus helping finding the source of a
possible fire

Part of BS4 in D8.3.

Repository URL https://github.com/silvanus-prj/social-media-data-extractor-from-
Atos

Integration
component list

This module is part of the tools of T4.4 for social media detection, UP3

Deployment
location

https://github.com/silvanus-prj/social-media-data-extractor-from-
Atos

Container size No dockerization required (access using REST API)

Requirements Python environment in a computer with GPU capability

Contact email jose.martinezs@eviden,com

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 23 | 78

Table 17: Description of the Fire Spread Model

Title UP6 – Fire Spread Model WP WP5

Description/
Functionality

Predicts the spread of the fire in several time intervals.
Corresponds to BS5 of D8.3

Repository URL https://github.com/silvanus-prj/fire-spread-model

Integration
component list

SAL, dashboards, Decision Support System, Health Impact Assessment

Deployment
location

Silvanus cloud

Container size 5GB (virtual 9GB)

Requirements RAM 32GB, CPU core i7 1165g7 or better

Contact email a.bonanos@exus.ai, g.diles@exus.ai

Table 18: Description of Geo-location component

Title Geo-location WP WP2 and WP5

Description/

Functionality

Extraction and processing of geo-location of user-generated content. This

component plays an important part in localisation of biodiversity data within

the Woode application.

Relevant to BS6 in D8.3.

Repository URL https://github.com/silvanus-prj/Geo-location

Integration

component list

This module is integrated in the pipeline of the Woode mobile application for

extraction of geo-location data related to the biodiversity of forests.

Deployment

location

VTG server

Container size 0.5GB

Requirements Java 8+

Mapbox lib

MySQL 8.0 database

Android minSdk 28

Android compileSdk 33

Gson lib

Retrofit lib

Contact email t.piatrik@venaka.eu, m.cavojsky@venaka.eu, r.pucek@venaka.eu

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 24 | 78

Table 19: Description of Image analytics component

Title Image analytics WP WP2

Description/

Functionality

This component is responsible for a range of image analytics processes,

including image segmentation, augmentation and upsampling. These

processes are part of the computer vision layer that is enabling the processing

and analysis of the images of tree leaves gathered through the Woode mobile

application.

Relevant to BS6 in D8.3.

Repository URL https://github.com/silvanus-prj/Image-analytics

Integration

component list

This module is integrated in the pipeline of the Woode mobile application for

analysis and processing of images.

Deployment

location

VTG server

Container size 1GB

Requirements OpenCV
TensorFlow
MySQL 8.0 database
Gson lib
Retrofit lib
Java 8+

Contact email t.piatrik@venaka.eu, m.cavojsky@venaka.eu, r.pucek@venaka.eu

Table 20: Description of Machine learning component for recognition of trees based on leaves’ images

Title Machine learning WP WP2 and WP5

Description/

Functionality

This component is responsible for machine learning processes enabling

classification of images and recognition of trees based on trained models. This

includes deep learning models and convolutional neural networks that are

specially tailored and optimised for targeted use case of the Woode

application.

Relevant to BS6 in D8.3.

Repository URL https://github.com/silvanus-prj/Machine-learning

Integration

component list

This module is integrated in the pipeline of the Woode mobile application for

image classification and leaf/tree recognition tasks.

Deployment

location

VTG server

Container size 1GB

Requirements TensorFlow
TFLearn
OpenCV

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 25 | 78

MySQL 8.0 database
Gson lib
Retrofit lib

Contact email t.piatrik@venaka.eu, m.cavojsky@venaka.eu, r.pucek@venaka.eu

Table 21: Description of Data annotation component

Title Data annotation WP WP5

Description/

Functionality

Large set of manual and machine-generated annotations of images of tree

leaves. This component plays an important part in training of the machine

learning algorithms and represents a valuable asset for any further scientific

works on analysis of the biodiversity data

This component is integrated in the pipeline of the Woode mobile application

for training of machine learning modules and analysis of biodiversity data.

Relevant to BS6 in D8.3.

Repository URL https://github.com/silvanus-prj/Data-annotation

Integration

component list

Deployment

location

VTG server

Container size Not yet determined

Requirements MySQL 8.0 database

Gson lib

Retrofit lib

Contact email t.piatrik@venaka.eu, m.cavojsky@venaka.eu, r.pucek@venaka.eu

Table 22: Description of Data aggregation component

Title Data aggregation WP WP5

Description/

Functionality

This module is responsible for data storage and knowledge management. It

includes the database system designed to store the data extracted through the

Woode mobile application. The component also includes all communication

services between database and user-side application, and knowledge-based

models for extraction of semantic data.

Relevant to BS6 in D8.3.

Repository URL https://github.com/silvanus-prj/Data-aggregation

Integration

component list

This component is integrated in the pipeline of the Woode mobile application

for storing, modelling, and knowledge management of the data.

Deployment

location

VTG server

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 26 | 78

Container size Not yet determined

Requirements MySQL 8.0 database

Gson lib

Retrofit lib

Contact email t.piatrik@venaka.eu, m.cavojsky@venaka.eu, r.pucek@venaka.eu

Table 23: Description of Woode user-side mobile application component

Title Woode user-side

mobile application

WP WP2 and WP8

Description/

Functionality

This component represents the user-side of the Woode mobile application,

including UI and all features necessary for gathering, visualising and

communicating the data with the server side components.

This component will be available through the app store and will be installed on

the user mobile phone.

Relevant to BS6 in D8.3.

Repository URL https://github.com/silvanus-prj/Woode-user-side-mobile-application

Integration

component list

NA

Deployment

location

VTG server and Google play store

Container size 0.5GB

Requirements Java 8+
Mapbox lib
MySQL 8.0 database
Android minSdk 28
Android compileSdk 33
Gson lib
Retrofit lib

Contact email t.piatrik@venaka.eu, m.cavojsky@venaka.eu, r.pucek@venaka.eu

Table 24. Description of SILVANUS Semantic Knowledge Base

Title SILVANUS Semantic
Knowledge Βase

WP WP5

Description/
Functionality

This component functions as an RDF triplestore, which stores both
the T3.1 ontology as well as data from CTL’s IoT fire/smoke detection
device (T4.4), UTH’s health monitoring device (T5.3) and CERTH's
social media sensing (T4.3).

BS7 in D8.3

Repository URL https://github.com/silvanus-prj/semantic-knowledge-base

Integration
component list

SAL

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 27 | 78

Deployment
location

Catalink’s server

Container size Not applicable

Requirements RDF triplestore (e.g. Ontotext’s GraphDB), python

Contact email marios.iacovou@catalink.eu, skontogiannis@catalink.eu,
maria.maslioukova@catalink.eu

Table 25: Description of the Data Fusion Application

Title Data Fusion WP WP5

Description/

Functionality

Web services that provide the analysis of resource allocation in certain areas

based on both area-wide and fire probability. We also provide a blueprint of

the front-end concept as a reference for ITTI to build the front-end app

Relevant to BS8 in D8.3

Repository URL (Webservices) https://github.com/silvanus-prj/fire-probability-analytics-back-

end

(Fe Blueprint - Private) https://gitlab.com/silvanus1/fire-probability-

analitics/fe.git. Please contact us to become a collaborator

Integration

component list

Data ingestion, Fuzzy logic, Front-end map layer visualizer

Deployment

location

Amikom Local VM

Docker container

size

Webservices - 2 GB

Requirements Hardware: Minimum 4 VCPU, 8GB RAM, 25GB Storage

Libraries: Python3, Fabric, numpy, Flask-SQLAlchemy, Flask-WTF, WTForms,

coverage ,shortuuid, sqlalchemy-utils, geojson, pymysql, mysql-connector-

python, pandas, geopandas, Flask_Cors, python-dotenv

Contact email kusrini@amikom.ac.id , arief_s@amikom.ac.id

Table 26 : Evacuation Route Planning

Title Evacuation Route

Planning

WP WP5 – T5.4.4

Description/

Functionality

The primary functionality of this component is to enhance the process of

evacuation planning. Through integration of various SILVANUS components,

such as forecasting fire spread and utilizing data from a range of internal and

external sources, as well as applying appropriate models, this particular

component has the capability to generate a set of routes that guarantee the

stakeholders' safe migration along with the corresponding time frame within

which they are considered valid.

https://github.com/silvanus-prj/fire-probability-analytics-back-end
https://github.com/silvanus-prj/fire-probability-analytics-back-end
https://gitlab.com/silvanus1/fire-probability-analitics/fe.git
https://gitlab.com/silvanus1/fire-probability-analitics/fe.git

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 28 | 78

Relevant to BS9 in D8.3

Repository URL https://github.com/silvanus-prj/evacuation-paths

Integration

component list

Storage Abstraction Layer, Knowledge Base, Decision Support System -

Dashboard, Fire Spread Model, Health Impact Component

Deployment

location

Local VM (silvanus.uth.gr).

Container size In case of containerization, approximately 1.5 GB would be required.

Requirements Python
Python libraries (e.g., flask, requests, pymongo, openrouteservice, geojson,
json)

Contact email kostasks@uth.gr, paikonom@uth.gr, gboulougar@uth.gr

Table 27: Description of the Health Impact Component

Title Health Impact Component WP WP5 - T5.3.3

Description/

Functionality

The main objective of this component is to monitor the levels of pollutants

released by wildfires through the utilization of both portable and stationary

IoT devices. It aims to assess the air quality in the impacted region and

subsequently provide health related recommendations to stakeholders. In

addition, it formulates a list of relative risk indicators associated with short-

term and long-term exposure to emissions from wildfires.

Relevant to BS10 in D8.3

Repository URL https://github.com/silvanus-prj/health-impact

- http://silvanus.uth.gr/get-latest-data?emissions={INT}. Returns the latest

n-th elements from the MongoDB in JSON format. Authentication is

supported.

- http://silvanus.uth.gr/aqi. Returns the most recently calculated AQI.

Authentication is supported.

- http://silvanus.uth.gr/data-metadata. Posts a http request (data) to the

SAL. SILVANUS credentials are adopted.

Integration

component list

Storage Abstraction Layer, Knowledge Base, Decision Support System -

Dashboard, Fire Spread Model

Deployment

location

Local VM (silvanus.uth.gr).

MQTT broker (mqtt://iot.eclipse.org)

Container size In case of containerization, approximately 1.5 GB would be required.

Requirements Python
Python libraries (e.g., flask, requests, pymongo, geojson, json, scipy)

Contact email kostasks@uth.gr, paikonom@uth.gr, gboulougar@uth.gr

https://github.com/silvanus-prj/health-impact
http://silvanus.uth.gr/get-latest-data?elements=%7bINT

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 29 | 78

Table 28: Description of Citizen Engagement App

Title Citizen Engagement App

(CEA)

WP WP3

Description/

Functionality

The Mobile Application for Citizen Engagement is implemented using React

Native, Expo & Tailwind CSS. Contains several modules such as:

• Educational Module containing Guidelines, News and Best Practices

• Fire Reporting and Notification Module

Relevant to BS11 in D8.3

Repository URL https://github.com/silvanus-prj/citizen-engagement-app

Integration

component list

SILVANUS Security Server

Information sharing protocols between first responders and public (T8.2)

Backend Services for the Citizen Engagement Mobile App’s (CEA) / Content

Management System (CMS)

Deployment

location

Google Play Store (test version):

https://play.google.com/store/apps/details?id=cea.silvanus

App Store:

https://apps.apple.com/us/app/silvanus/id6483808614

Container size No container. .apk size: 44mb

Requirements The mobile app by itself is standalone and will be deployed in the Play Store &

the App Store. Related backend services that are under development will be

defined in later stages. The developed Backend Services include:

• Fire Reporting and Notification Services (using the interfaced and

customized EmerPoll service),

• Content Management System

Contact email mariana@massivedynamic.se, emil.gatial@savba.sk

 Table 29: Description of Backend Services for the Citizen Engagement Mobile App’s (CEA)

Title Backend Services for the Citizen

Engagement Mobile App’s (CEA)

/ Fire Reporting Services

WP WP3 & WP8

Description/

Functionality

One of the main modules of the Citizen Engagement Mobile App (CEA) is the “Fire

Reporting and Notification” module. The backend of the module uses the

EmerPoll cloud system (developed and customized by UISAV). The individual

components of this Backend are the following:

• EmerPoll – is a distributed cloud service for collecting and aggregating

responses from mobile devices. It uses Polls/Channel/Template

concepts to set up, execute and manage information collection and

sharing campaigns. EmerPoll provides a UI as well as a REST API.

https://github.com/silvanus-prj/citizen-engagement-app
https://play.google.com/store/apps/details?id=cea.silvanus
https://apps.apple.com/us/app/silvanus/id6483808614
mailto:Mariana@massivedynamic.se
mailto:emil.gatial@savba.sk

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 30 | 78

• Information Sharing Protocol – specification of message flows in Avro

IDL schema format. The messages are compatible with the EmerPoll

API. Specific configuration of Polls, Templates, Channels and

Namespaces.

• MQTT Collector Node – provides message persistence in the

communication between CEA and EmerPoll. Uses MQTT with

customized topics and reliable message delivery. It is also intended to

manage binary data (images, videos) and mobile device location

matching with Channels geo areas.

Relevant to BS11 in D8.3

Repository URL The repositories for individual components:

• EmerPoll and MQTT Collector Node: Private GitLab repository

• Information Sharing Protocol: https://github.com/silvanus-

prj/protocols

Integration

component list

Citizen Engagement App (CEA)

Edge Micro Data Centre (EMDC)

Mesh in the Sky

SILVANUS Dashboard

Storage Abstraction Layer (SAL)

Deployment

location

Deployment of Backend services are deployed on the UISAV’s infrastructure:

• EmerPoll GUI: https://silvanus.emerpoll.eu/

• EmerPoll REST API: https://silvanus.emerpoll.eu/rest/

• Information Sharing Protocol: https://github.com/silvanus-

prj/protocols

• Collector Node: Erlang-based scalable service deployed in UISAV’s

Private Cloud.

Container size Not using application containerization (Docker) but using system containers

(LXC).

Requirements The services to be deployed on a private cloud.

Contact email balogh@savba.sk, emil.gatial@savba.sk

Table 30: Description of the Backend Service of the Citizen Engagement Mobile App

Title Backend Services for the Citizen

Engagement Mobile App

WP WP3

Description/

Functionality

We have replaced the CMS solution with mobile native storage. The content is

managed from the native app. This new solution was implemented since it helps

to reduce the waiting time for the content to load, makes all the information

available offline and it doesn’t affect the download time or the performance of

the app.

Repository URL https://github.com/silvanus-prj/citizen-engagement-app/ (same as app)

https://github.com/silvanus-prj/protocols
https://github.com/silvanus-prj/protocols
https://silvanus.emerpoll.eu/
https://silvanus.emerpoll.eu/rest/
https://github.com/silvanus-prj/protocols
https://github.com/silvanus-prj/protocols
mailto:balogh@savba.sk
mailto:emil.gatial@savba.sk
https://github.com/silvanus-prj/citizen-engagement-app/

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 31 | 78

Integration

component list

Citizen Engagement Mobile App (CEA)

SILVANUS Secure Server through the fire report module by EmerPoll

Deployment

location

Within the native app.

Container size NA

Requirements The services are deployed in the react native app, no extra requirements.

Contact email mariana@massivedynamic.se, timo@massivedynamic.se

Table 31: Description of the Storage Abstraction Layer

Title Storage Abstraction Layer
(SAL)

WP WP5

Description/
Functionality

The SAL sits between the object store and the rest of the SILVANUS services. It
hides the underlying store implementation from the services and provides
additional functionality, such as the metadata index and emitting object
events.

Relevant to BS12-21 in D8.3

Repository URL https://github.com/silvanus-prj/sal

Integration
component list

1) Data ingestion services for obtaining data products from third-party
systems.

2) Data ingestion service for receiving data from UAVs, UGVs and IoT
Gateways in the field.

3) Knowledge Based System
4) User products

Deployment
location

Silvanus Cloud

Container size 1) Data & metadata ingestion microservice: 3.83GB
2) Metadata index microservice: 258MB
3) Schema microservice: 100MB
4) Message queue microservice: 269MB
5) Data retrieval microservice: 152MB
6) Claim Check Pattern retrival microservice: 152

Requirements CPU: 8-12 vCPU

RAM: 16GB

STORAGE:

1) Object storage MinIO +500GB.
2) Persistent Volume +50GB

Contact email mustafa.albado@dell.com

Table 32: Description of the Data Ingestion Pipeline

Title Data Ingestion Pipeline WP WP4

mailto:Mariana@massivedynamic.se
mailto:timo@massivedynamic.se

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 32 | 78

Description/
Functionality

Data collection, aggregation and pre-processing engine from third-
party and internal data sources.

Implements BSs – 13, 14, 16, 17, 18 in D8.3

Repository URL https://github.com/silvanus-prj/dip

Integration
component list

1) SAL

2) Internal Data Providers (UAV,UGV,IoT)

3) UPs/Dynamic Data Consumers

Deployment
location

SILVANUS Cloud / SILVANUS FCC

Docker container
size

1) Pipeline Engine: 2GB

2) Pipeline Initiator Microservice: 150MB

3) RabbitMQ + UI Service (shared): 250MB

Requirements • CPU: 4 Core+

• RAM: 32GB+

• STORAGE: 512GB+

Contact email matthew_keating@dell.com

Table 33: Description of OpenStreetMap Conversion module

Title OpenStreetMap Features
Conversion

WP WP4

Description/
Functionality

The program extracts roads and railways features from Open Street
Map (OSM) shapefile and converts to NetCDF format.

Relevant to BS13 in D8.3

Repository URL https://github.com/silvanus-prj/osm_to_netcdf

Integration
component list

The program is integrated in the Ingestion Data flow from source to
SILVANUS Storage Abstraction Layer (Post-processing).

Deployment
location

Silvanus cloud

Container size No container

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 33 | 78

Requirements Python3 main libraries used:

• Shapely

• Numpy

• Geopandas

• dask_geopandas

• netCDF4

Contact email ivo.gama@terraprima.pt, jorge.palma@terraprima.pt

Table 34: Description of Sentinel Derived Indices

Title Sentinel Derived Indices WP WP4

Description/
Functionality

The program downloads Sentinel2 images and create vegetation
indexes to netcdf and/or gtiff format

Relevant to BS13 in D8.3

Repository URL https://github.com/silvanus-prj/sentinel2_to_ndvi

Integration
component list

The program is integrated in the Ingestion Data flow from source to
SILVANUS Storage Abstraction Layer (Post-processing).

Deployment
location

Silvanus cloud

Container size No container

Requirements Python3 main libraries used:

• cdsetool

• Numpy

• Rasterio

• Shapely

• netCDF4

Contact email ivo.gama@terraprima.pt, jorge.palma@terraprima.pt

Table 35: Description of SILVANUS MetaData Extractor

Title SILVANUS Metadata
Extractor

WP WP4

mailto:Ivo.gama@terraprima.pt
mailto:Ivo.gama@terraprima.pt

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 34 | 78

Description/
Functionality

The developed system aims to extract metadata from the object data
injected into the Silvanus platform and stores them, by json files, into
the disposed repository.

Relevant to BS15 in D8.3

Repository URL https://github.com/silvanus-prj/metadata-extractor

Integration
component list

The Silvanus Metadata Extractor is integrated with the Apache Nifi
processor (ExecuteStreamCommand).

Deployment
location

Silvanus Cloud

Container size No container.

Requirements CPU 1.80 GHz, RAM 16 GB, STORAGE (depends on the size and
quantity of the processed data).

Contact email mcefarelli@expert.ai, ccaterino@expert.ai

Table 36: Description of SILVANUS Security Server

Title Silvanus Security Server WP WP5

Description/
Functionality

Silvanus Security Server container consists of a Keycloak authorization
server and PostgreSQL database management system. Moreover, the
Keycloak server is configured with the custom configuration allowing
authentication and authorization based on Silvanus user roles as well as
used pilot sites. The provided code contains a simple proof-of-concept
Python web app that could be used during connectivity tests.

Relevant to BS22 in D8.3

Repository URL https://github.com/silvanus-prj/silvanus-security-server

Integration
component list

This component is integrated with SAL (DELL) and the Dashboard (ITTI).

Deployment
location

Silvanus Cloud

Container size We do not use raw container - see more details concerning Kubernetes
pod requirements below.

Requirements At least 1 virtual processor, at least 4GB RAM, 10GB of storage

Contact email krzysztof.cabaj@pw.edu.pl

Table 37: Description of UI framework

Title UI framework (common
dashboard)

WP WP5

https://github.com/silvanus-prj/silvanus-security-server
mailto:krzysztof.cabaj@pw.edu.pl

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 35 | 78

Description/
Functionality

A web-based interface which will felicitate the crisis management
during fires. Display of an interactive map for monitored area, with
layers corresponding to different sources of data about fire probability
and fire events.

Repository URL https://github.com/silvanus-prj/UI-framework

Integration
component list

SAL, RMQ,
Fire Danger Index
Fire Spread Forecast
Notifications From IoT Devices
notifications from Citizen Engagement App
notifications from Social Media
Fire Detection At The Edge
UGV
Evacuation Route Planning
Health Impact Assessment
Firefight Resource Allocation
Multilingual Forest Fire Alert
Priority Resource Allocation

Deployment
location

Silvanus Cloud

Container size

Requirements

Contact email mprzybysz@itti.com.pl

Table 38: Description of robot navigation and mapping module

Title Robot navigation and
mapping module

WP WP4

Description/
Functionality

This is an on-robot software system for the proprietary sensor payload
(lidar, IMU, cameras, GPS), which allows the robot to
autonomously/semi-autonomously explore and navigate within
wildfire environments, while mapping the environment in three
dimensions as point clouds and associated images.

The system includes a base station software component that allows
the robot to be controlled and the sensor readings to be processed by
a user in a safe location. The base station software also sends a
number of pieces of information up to the Silvanus platform over REST,
namely images, locations and orientations of the robot.

Repository URL https://github.com/silvanus-prj/ground-robotics-CSIRO

Integration
component list

This module integrates with the tools for T4.3, for navigation to/from
wildfire fronts.

Deployment
location

None

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 36 | 78

Container size Not applicable

Requirements This is a proprietary, embedded module that is specific to the sensor
payload, and cannot be installed on different CPUs. It therefore
requires the specific NUC processor, with a proprietary integration of
Velodyne VLP16 lidar, IMU, cameras and GPS units in order to
function. We do not support its transfer to a different sensor payload.

Contact email thomas.lowe@csiro.au

Table 39: Mesh in the Sky

Title Mesh in the Sky WP WP 5

Description/
Functionality

A self-configurable rapidly deployable mesh network utilising both
ground and UAV-based nodes.

Repository URL Not Applicable

Integration
component list

IoT Sensors for detection and monitoring of forest fires.

Deployment
location

Self-contained and could be deployed at any pilot site.

Container size Not applicable

Requirements Requires UAV pilot license for operation of drones

Contact email garik@rinicom.com; lee.sessions@rinicom.com;
projects@rinicom.com;

Table 40: Description of the Social Media Application

Title Social Media Sensing WP WP5

Description/

Functionality

API Classification: Web API that provides fire prediction based on text input in

Indonesian. API NER: Web API that detects the location in a tweet. API Fire

Tweet: Web API that provides a time-ranged count of tweets categorized in the

label that correlated with fire forest.

Relevant to BS8

Repository URL API Classification: https://github.com/silvanus-prj/social-media-sensing-api-

ner

API NER: https://github.com/silvanus-prj/social-media-sensing-api-ner

API Fire Tweet: https://github.com/silvanus-prj/social-media-sensing-back-

end

Integration

component list

With DSS in version 2 of the platform

Deployment

location

Amikom Local VM

API Classification:

mailto:garik@rinicom.com
mailto:lee.sessions@rinicom.com
mailto:projects@rinicom.com
https://github.com/silvanus-prj/social-media-sensing-api-ner
https://github.com/silvanus-prj/social-media-sensing-api-ner
https://github.com/silvanus-prj/social-media-sensing-api-ner
https://github.com/silvanus-prj/social-media-sensing-back-end
https://github.com/silvanus-prj/social-media-sensing-back-end

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 37 | 78

API NER:

API Fire Tweet:

Docker container

size

API Classification:

API NER:

API Fire Tweet:

Requirements Hardware: Minimum 4 VCPU, 8GB RAM, 25GB Storage

Classification & NER Libraries:

scikit-learn, pandas, matplotlib, seqeval, Flask, PySastrawi, deep_translator,

shortuuid, tensorflow==1.15, h5py==2.10, keras==2.3.1, keras-

applications==1.0.8 , keras-preprocessing==1.0.5, protobuf==3.19, keras-

team: git+https://www.github.com/keras-team/keras-contrib.git

API Fire Tweet Library: Node JS 14

Contact email kusrini@amikom.ac.id, arief_s@amikom.ac.id

Table 41: Description of Kubeflow Pipeline Component Factory

Title KFP Component Factory WP WP5

Description/
Functionality

The developed system aims to create single Kubeflow Pipeline stages
from single PY functions, in form of YAML component descriptor file.

The components/files can be loaded and composed for creating KF
pipelines for running machine learning
experiments/trainings/evaluations.

Repository URL https://github.com/silvanus-prj/kfp-component-factory

Integration
component list

Stand-alone: the component can be exploited by each ML model
developer.

Deployment
location

Silvanus Cloud

Container size No container.

Requirements Kubeflow engine on a reachable node.

Contact email ccaterino@expert.ai

mailto:kusrini@amikom.ac.id
mailto:arief_s@amikom.ac.id

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 38 | 78

2 Integration environment

In this section we give an overview of the technologies around which the SILVANUS platform

has been developed and the main features of the infrastructure on which currently the

SILVANUS backend services have been deployed. Specifically, we present details about the

continuous integration/deployment environment and its configuration, the core of the

SILVANUS middleware built around the Storage Abstraction Layer (SAL) that provides a shared

service for data ingestion, storage and retrieval and the infrastructure that has been

developed to host these services.

2.1 Software repository and development flow
In D8.1 [1] GitLab was presented as a platform to support the SILVANUS DevOps repository

and related toolchain. At the beginning of the 2nd project year Gitlab announced a limitation

of the number of users for private projects, which was considered a severe limitation for

SILVANUS. Thus, the decision to move to the GitHub platform was taken, since GitHub was

evaluated as the most appropriate solution. Its features and the SILVANUS project

environment that has been setup to host the SILVANUS cloud platform are presented below

in this deliverable. GitHub is a state-of-the-art framework used in many large-scale projects

to manage source code and for version control [2]. GitHub is an open-source code

management (SCM) system based on Git [3] but adding its own features covering for instance

the DevOps pipeline. Hence, it keeps many of the GitLab features already considered since

D8.1 and we briefly present the adapted development and integration flow below.

GitHub offers a rich set of solutions and features such as a git repository, issue tracking,

projects and, most important, a set of CI/CD tools with GitHub Actions.

Development Operations (DevOps) unifies the software development and operations with

that software in an automated way. Focus on software testing, quality control, best practices,

integrations tests and, at last, deployment on production environments. This automated

workflow makes delivery faster with better quality and tested releases.

To achieve a more robust workflow, the following stages emerge:

1. Branches definition: main, development, staging

2. Tags definition for versions and releases

3. Definition of a build script to build the app

4. Definition of testing script of the build

5. QA evaluation of the build

6. Deploy to staging

7. Deploy to production

Continuous integration is a practice that prevents integration problem also known as

integration hell since each pull request on targeted branch is tested and, if passed, merged.

In GitHub the setup of continuous integration and deployment is achieved by workflows. The

above is depicted in Figure 1.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 39 | 78

Figure 1: GitHub continuous integration schema

2.2 GitHub based CI/CD

2.2.1 Docker

Containers operate like Virtual Machines (VMs) providing abstraction and isolation of

resources holding an application’s dependencies all in one place; hence, making it portable

and easy to transfer from one environment to another. However, containers unlike VMs are

lightweight only virtualizing the operating system; thus, a standalone container image is

enough to run an application on a system without having to install any additional packages.

They can be easily transferred from one environment to another and work uniformly

throughout. Docker is a technology that provides an abstraction layer over container

management technology. Instead of virtualizing an operating system for each service

deployment of an application, the deployment on docker is rather simple: the guest operating

system provides all the network, storage and resource management, while inside a docker

container fits a deployed application and its dependencies libs (nodejs, java, mysql, etc),

providing encapsulation enhancing overall security. The abstraction technologies and their

differences are shown in Figure 2

Figure 2: Abstraction technologies - Containers vs. VMs [13]

2.2.1.1 Dockerfile

The creation of a docker image is achieved with a Dockerfile script containing the setup of the

app dependencies, app installation, database configuration and all the required steps.

2.2.1.2 Docker Registry

Like git repository, an image build can be committed to a repository called registry that holds

the image changes.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 40 | 78

The registry used for Silvanus project is an account in Docker Hub with Pro Plan in order to

have unlimited private images.

• Username: silvanusproject

• Token: *******

2.2.2 GitHub Actions

GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform that

allows to automate a build, test, and deployment pipeline. GitHub Actions goes beyond just

DevOps and run workflows when other events happen in the repository.

2.2.2.1 Workflows – Events

Workflow is basically an automated procedure that’s made up of one or more jobs. It can be

triggered by 3 different ways:

1) By an event that happens on the Github repository

2) By setting a repetitive schedule

3) Or manually clicking on the run workflow button on the repository UI.

To create a workflow, we need to add a .yml file in the github/workflows directory of the

repository (e.g. docker-ci.yml) containing the workflow jobs, the separate steps, the functions,

and variables.

We can define how a workflow will be triggered using the on keyword.

on:

 push:

 branches: [main]

 tags: ['v*.*.*']

 schedule:

 - cron: '*/15 * * * *'

 release:

 types: [published]

For a complete list of events that can be used to trigger workflows, see Events that trigger

workflows1.

2.2.2.2 Runners

A runner is a server that runs the workflows when they're triggered, so there’s a need to attach

a runner to run the job. Self-hosted GitHub runners have been deployed and added into the

GitHub organization. They are shared, so they can be used with GitHub Actions from all

organization repositories.

We use the run-on keyword with self-hosted label to specify a self-hosted runner we want to

use. The job will be attached and run to an available self-hosted runner.

jobs:

 docker:

 runs-on: [self-hosted]

1 https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 41 | 78

2.2.2.3 Jobs – Steps – Actions

A workflow consists of one or multiple jobs as shown in Figure 3. All jobs inside a workflow

normally run in parallel, unless they depend on each other, then in that case, they run serially.

Each job will be run separately by a specific runner and is composed of multiple steps. Steps

are individual tasks that run serially, one after another. Each step can have one or more

actions (basically a standalone command). The good thing about action is that it can be

reused. If someone has already written a GitHub action that we need, we can actually use it

in our workflow.

Figure 3: GitHub Actions [11]

2.2.2.4 Activities – Logs

After a workflow run has started (as shown in Figure 4), we can see a visualization graph of

the run's progress and view each step's activity, logs, results on GitHub UI (shown in Figure 5).

Figure 4 Workflow Runs

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 42 | 78

Figure 5: Job Run Details

For more information see [13].

2.2.3 Flux CD

Flux is a set of continuous and progressive delivery solutions for Kubernetes that are open and

extensible. We use Flux to deploy our applications in a GitOps manner. The basic core

concepts in Flux are shown in Figure 6.

Figure 6: Flux Basic Flow [14]

2.2.3.1 GitOps

GitOps is a way of implementing Continuous Deployment for cloud native applications. It

focuses on a developer-centric experience when operating infrastructure, by using tools

developers are already familiar with, including Git and Continuous Deployment tools.

The core idea of GitOps is having a Git repository that always contains declarative descriptions

of the infrastructure currently desired in the production environment and an automated

process to make the production environment match the described state in the repository.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 43 | 78

2.2.3.2 Sources

A Source defines the origin of a repository containing the desired state of the system and the

requirements to obtain it. For example, the latest 1.x tag available from a Git repository over

SSH.

The origin of the source is checked for changes on a defined interval, if there is a newer version

available that matches the criteria, a new artifact is produced.

All sources are specified as Custom Resources in a Kubernetes cluster, examples of sources are

GitRepository, ImageRepository, HelmRepository and Bucket resources.

2.2.3.3 Reconciliation

Reconciliation refers to ensuring that a given state (e.g. application running in the cluster,

infrastructure) matches a desired state declaratively defined somewhere (e.g. a Git

repository).

• HelmRelease reconciliation ensures the state of the Helm release matches what is
defined in the resource, performs a release if this is not the case (including revision
changes of a HelmChart resource).

• Kustomization reconciliation ensures the state of the application deployed on a
cluster matches the resources defined in a Git or OCI repository or S3 bucket.

• Bucket reconciliation downloads and archives the contents of the declared bucket on
a given interval and stores this as an artifact, records the observed revision of the
artifact and the artifact itself in the status of resource.

2.2.3.4 Kustomization

The Kustomization custom resource represents a local set of Kubernetes resources (e.g.

kustomize overlay) that Flux is supposed to reconcile in the cluster. The reconciliation runs

every five minutes by default, but this can be changed with .spec.interval. If you make any

changes to the cluster using kubectl edit/patch/delete, they will be promptly reverted. You

either suspend the reconciliation or push your changes to a Git repository.

For more information about the basics of Flux CD see Core Concepts2.

2.3 SILVANUS Data Ingestion, Storage and Retrieval
The Data Ingestion Pipeline (DIP) is a common ingestion framework for the collection, pre-

processing and annotation of Data Objects. Data Object providers vary in a wide range of

domains but can be summarized in two categories outlined below. The DIP does not provide

the persistent storage of incoming Data Objects, rather this component is tightly coupled with

the Storage Abstraction Layer (SAL) providing the input processed Data Objects (Objects +

Metadata) as output.

In this section we provide an outline of both DIP, SAL, and other SILVANUS services (e.g., KB)

components as well as examples of operation and references covering:

1. DIP – Data Ingestion mechanism for Internal Data Providers

2. DIP – Dynamic Data Request mechanism for User Products

2 https://fluxcd.io/flux/concepts/

https://fluxcd.io/flux/concepts/

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 44 | 78

3. SAL – Data Retrieval mechanism for User Products

2.3.1 Component Details

2.3.1.1 Data Ingestion Pipeline

Internal Data Providers include:

- Drone / UAV (Image, Video)

- Ground Robot / UGV (Image, Video)

- IoT Devices (Temperature, Humidity, Gas/Smoke particles in air, Image)

External (3rd Party) Data Providers include:

- Static Product Ingestion: This category defines datasets which have statically defined

parameters for ingestion. Parameters for ingestion refer to attributes such as the

geospatial area, ingestion frequency, data format or temporal range. For some data

sources we need to only consider a statically defined set of parameters (and therefore

ingestion messages) which can be automated and ingested based on these

requirements.

- Custom Product ingestion: Custom dataset parameters are a requirement of some

datasets, specifically the user products that leverage these datasets within AI/ML

training / inference and visualization dashboards. Storage Abstraction Layer

The Storage Abstraction Layer (SAL) serves as an intermediary between data sources, user

products, and the object store within the SILVANUS system. Its primary function is to abstract

the object store, offering two key advantages. Firstly, it enables flexibility in managing data at

rest, allowing for efficient data management practices. Secondly, it decouples data from user

products in a multi-source, multi-client environment, providing support for security, policy,

privacy, and business constraints. By utilizing the SAL, the SILVANUS system achieves

enhanced control and adaptability in handling data across various components.

2.3.1.1.1 Object store

The object store serves as the central repository within SILVANUS for storing both raw and

processed data. Given that a significant portion of the ingested raw data in SILVANUS is

unstructured, it is more efficient to store it in a unified object store rather than employing

multiple databases for implementing the object store in SILVANUS, the MinIO object store is

utilized and managed through the standard S3 storage API. This combination ensures

seamless compatibility and efficient data management within the SILVANUS ecosystem. In the

SILVANUS platform, the Apache NiFi PutS3Object processor is used to store the data in the

MinIO object store.

MinIO is an open-source object storage system that is designed to be simple, scalable, and

cloud-native. It allows you to store and retrieve large amounts of unstructured data, such as

documents, images, videos, and other types of files. MinIO is built on the concept of object

storage, where data is stored as objects rather than in a hierarchical file structure. Each object

is assigned a unique identifier and is stored with its associated metadata. This approach allows

for efficient and flexible storage of data, as objects can be accessed and manipulated

independently. One of the key features of MinIO is its high scalability. It is designed to scale

horizontally by distributing data across multiple servers, allowing you to expand storage

capacity as your data grows.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 45 | 78

2.3.1.1.2 Data and metadata ingestion

The interactions among the SAL for the three ingestion methods - external, internal, and user

products - are depicted in Figure 7. A distinct SAL interface is required for each ingestion

method to facilitate communication. During this process, the data object and its metadata are

coupled and sent to the SAL by the Data Ingestion Pipeline (DIP) over endpoint. The SAL

implementation then processes the input based on its origin, validates the metadata, and

confirms that there are no data duplicates. The data objects are stored and/or forwarded to

the user products via the message bus, and a metadata entry is added to the metadata index.

Figure 7: The interaction between SAL and other components in SILVANUS platform

Figure 8 illustrates the implementation of the validation steps using Apache NiFi. The

validation process focuses on the mandatory fields specified in Table 7 of Deliverable 8.1 [1].

Figure 8: Metadata validation

The SILVANUS SAL metadata index relies on the Knowledge Graph technology, which is

recommended to be implemented without blank nodes and duplicates to optimize search

efficiency. To achieve this, three duplication check steps are employed. The first step involves

a data duplication check, where the unique ID of the object data provided by the data source

is utilized. The second step utilizes the metadata Format field, which comprises subfields such

as type, resolution, and event. Lastly, the Spatial field describes the spatial characteristics of

the data object, including coordination and pilot. These duplication check steps are executed

using NiFi processors and JenaDB. Figure 9 shows the workflow of data and metadata

duplication checks. Figure 10 showcases the implementation of the Data and Metadata

duplication check process using Apache NiFi.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 46 | 78

Figure 9: The flowchart of data and metadata deduplication

Figure 10: Data and Metadata duplication check

Data objects in SILVANUS can sometimes be quite large, up to 5GB. To optimize performance

and minimize memory usage, these objects are primarily stored on disk in the temporary

directory and are only loaded into memory when needed. Conversely, since metadata

messages are lightweight, they are kept in memory. Data objects are only stored when they

pass metadata and data duplication checks. Once stored, the data objects are saved in the

Object storage using the Apache NiFi PutS3Object processor. If user products do not directly

request the data objects, they are deleted from the temporary directory. However, if the data

objects are passed to the message bus, they remain in the temporary directory until their

expiration date.

Once the data has been stored in the object storage, the results of the “Data and metadata

duplication check” process are transformed into Triples format before being included as an

entry in the knowledge-graph-based metadata index.

2.3.2 User Product Endpoints

The currently defined UP endpoints are shown in Table 42 below.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 47 | 78

Table 42: User Products Endpoints

Service IPs/Endpoint Format Method

Data Ingestion Pipeline
(DIP)

10.20.20.3

UAV_Ingest DIP:31903/ Multi-part form
(data+metadata)

POST

UGV_Ingest DIP:31904/ Multi-part form
(data+metadata)

POST

IoT_Ingest DIP:31905/ Multi-part form
(data+metadata)

POST

AQI_Ingest DIP:31906/ Multi-part form
(data+metadata)

POST

Storage Abstraction
Layer (SAL)

10.20.20.3: 30516

Metadata Query API SAL:30130/metadata/query {key: value, key:
value}

POST

Data Retrieval API SAL:31222/api/getfiles {‘id’: ‘*data-uuid*’} POST

DIP Message Bus TBD

2.3.3 Demonstrations

2.3.3.1 DIP – Data Ingestion mechanism for Internal Data Providers

Figure 12 presents a sample Data Object and Metadata Descriptor generated for a single data

point captured during a test flight (Figure 11).

Figure 11: Drone image capture during mission

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 48 | 78

{
 "descriptor": {
 "uuid": "01879876-66bb-7cd4-9bac-3b3b40051722",
 "obj-class": "UAV",
 "format": {
 "type": "jpg"
 },
 "access": "slovak-pilot",
 "dataset-type": "image",
 "created": "1681890268.745728"
 },
 "lineage": {
 "source": [],
 "processing": "primitive"
 },
 "spatial": {
 "type": "Point",
 "coordinates": [
 {
 "lon": "48.115451",
 "lat": "17.138385"
 }
],
 "wkt": "POINT (48.115451 17.138385)",
 "pilot": "slovak",
 "properties": {}
 },
 "temporal": {
 "datetime": "1681890268.745728"
 },
 "tag": {
 "LeftTop": {
 "Latitude": 48.115451591784364,
 "Longitude": 17.138036680355089
 },
 "RightTop": {
 "Latitude": 48.115451591784364,
 "Longitude": 17.138734865055067
 },
 "LeftBottom": {
 "Latitude": 48.115062934582824,
 "Longitude": 17.13803668299569
 },
 "RightBottom": {
 "Latitude": 48.115062934582824,
 "Longitude": 17.138734862414466
 },
 "Center": {
 "Latitude": 48.115451591784364,
 "Longitude": 17.138385772705078
 },
 "Azimuth": 0.0,
 "Altitude": 50.0,
 "FocalLength": 0.0,
 "FieldOfView": 83.0,
 "Angle": 90.0,
 "UploadType": 5
 }
}

Figure 12: Metadata Descriptor for drone capture – (SILVANUS Metadata JSON-format-v2.2)

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 49 | 78

The Data Object is a simple .jpg image from one point of the mission, while the Metadata

Descriptor describes the range of attributes about this data point. Description of each

metadata field can be found in [4].

Critically:

1. The Metadata Descriptor ‘uuid’ field matches the uuid of the filename / data object

2. The Metadata Descriptor we consider the ‘tags’ field, encoding additional indexing

data generated during the mission – this data can be later used in an SQL-like

(SPARQL) interface as well as an abstraction API allowing for JSON based query match

indexing

curl --request POST \

 --url http://10.20.20.3:31903/ \

 --header 'Content-Type: multipart/form-data' \

 --header 'User-Agent: Insomnia/2023.5.7' \

 --form 'data=@C\...\UAV_Ingestion\01879876-66bb-7cd4-9bac-3b3b40051722.jpg' \

 --form 'metadata=@C\...\UAV_Ingestion\01879876-66bb-7cd4-9bac-3b3b40051722.json'

Figure 13: Ingestion Request containing Data Object & Metadata Descriptor from Data

Provider

In Figure 13, we ingest the desired data point (image + descriptor) to the relevant Data

Ingestion Pipeline specifically, the UAV ingestion endpoint, with no faults we should see a

request status 200. This process remains consistent across any type of data that may be

ingested into the system, assuming the Metadata Descriptor and access is correctly

generated, a wide range of data objects can be ingested into the SILVANUS Storage Layer.

2.3.3.2 DIP – Dynamic Data Request mechanism for User Products

Requests for custom datasets are consumed by the SILVANUS Message Bus and initiate the

Data Ingestion Pipeline of the relevant data provider with user provided parameters. Figure

14 shows a sample of a message sent to the Message Bus using a RabbitMQ dashboard UI and

a simple JSON message payload.

Other methods of interaction with the Message Bus include language specific APIs / packages

and HTTP based interface implemented by the RMQ server. In the current implementation

there is no direct request response or user notification of an ingestion error, other than

messages that support the claim-check pattern. This is a priority feature to be implemented

over the coming interactions of the Data Ingestion Pipeline and Message Bus. In Figure 14 an

example of how to ingest data into a specific RabbitMQ queue is shown while the full set of

the RabbitMQ queues are listed in Table 43.

-

Table 43: The RabbitMQ queues

Queue Name Dataset Parameters Output

ingest.dem Digital Elevation
Model

pilot: [*pilot_string]
type: [dem, asp, slp]

Tiff

Ingest.cdem Digital Elevation
Model

bbox: [*GeoJSON_coords]
type: [dem, asp, slp]

Tiff

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 50 | 78

ingest.osm OpenStreetMaps
Road / Rail

Pilot: [*pilot_string]
type: [road, rail]
resolution: [*Int]
bbox: [*GeoJSON_bbox]

GeoJSON,
NetCDF

ingest.sentinel-
ndvi

Sentinel-2/3 +
NDVI

resolution: [*Int]
footprint: [*GeoJSON_bbox]
cloud: [*Int]

SAFE, Tiff

ingest.lst Land Surface
Temperature

type: - [H, DC, TCI] NetCDF

ingest.ba Burned Area version: - [V1, V3] NetCDF
ingest.pop Population

Density

pop_year: - [*YYYY]
country: - [*ISO 3166 code]

CSV, Tiff

ingest.stf Short-term
Forecast

prod_date: - [*YYYY_MM_DD]
b_north: - [*float]
b_south: - [*float]
b_west: - [*float]
b_east: -[*float]

NetCDF

ingest.clc Corine Landcover year: - [*YYYY]
b_north: - [*float]
b_south: - [*float]
b_west: - [*float]
b_east: -[*float]

Tiff

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 51 | 78

Figure 14:Data ingestion to SAL and RabbitMQ

2.3.3.3 SAL – Claim-check - Data Retrieval User Products

Due to the substantial size of some of the datasets handled by the SILVANUS system, which

can reach up to approximately 5GB, it is not advisable to directly pass such large files as part

of the event messages between services. To address this, the Claim Check Pattern (CCP) design

is employed. The SILVANUS SAL makes decisions based on this pattern's ccp_threshold and

the pub/sub queue policy. It saves the data objects in a temporary data repository while

updating the metadata with relevant details for retrieving the stored data objects using the

"Add retrieval Info to Metadata" processor depicted in Figure 15. As shown in the figure, the

updated field format enables consumers to retrieve the data utilizing the CCP solution

efficiently. In Figure 16, an example of code to consume CCP automatically is shown.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 52 | 78

Figure 15:Retrieval of Data from Message Queues

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 53 | 78

Figure 16: The format of added filed to the metadata to enable CCP using NiFi JoltTransformJSON Processor

2.3.3.4 SAL – Metadata Query - Data Retrieval User Products

The SILVANUS SAL offers a metadata interface (i.e., the query interface in Figure 17) that

enables SILVANUS services to search the Metadata Index and locate the specific data objects

they need to fulfil their respective functions. This interface also provides the capability to

obtain additional metadata related to the requested object(s). When querying the Metadata

Index (Steps 1-4 in Figure 17 the response comprises a list of metadata entries that satisfy the

specified query constraints. Among the available fields within the metadata, the 'id' field is

particularly relevant, as it can be utilized to retrieve the corresponding data object through

the data retrieval interface (Steps 5-8 in Figure 17).

Figure 17: The workflow for the data retrieval solution

In Figure 18, an example of the query format for a user product is displayed, representing Step

1 as depicted in Figure 17. It is noteworthy that the query format shares similarities with the

metadata input, both in terms of the format itself and the fields utilized within the query. This

alignment in format and fields allows for consistency and ease of use between the user

product query and the associated metadata input.

Figure 18: Query format

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 54 | 78

Figure 19 displays a portion of the response corresponding to the query depicted in Figure 18.

It provides an excerpt of the response that was generated as a result of executing the query,

presenting relevant information or data related to the query criteria.

Figure 19: An example of query results

Figure 20 demonstrates a sample Python code that downloads a file with the id 'silvanus-

ld:eo:d015ddd1-20c0-48f3-9be8-8ac8ba65cd6d' from SAL.

Figure 20: File download request example

The demo demonstrated in the 5th GA can be found in [5].

For more information about data sources please refer to the following deliverables D4.1 [6],

D4.2 [7], D4.3 [8] [9], D4.4 [9].

2.3.3.5 Multi-queue consumption code – UTH integration

This section focuses on the consumption of messages from various RabbitMQ queues,

processing the incoming data, and organizing it according to particular criteria or content

types.

The Python code, configuration file, and instructions are available at [10].

https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-ga/_layouts/15/Doc.aspx?sourcedoc=%7BF5BF8E62-10F5-461B-AB7A-6A45F796F8A6%7D&file=SILVANUS_D4.1_v1.0.docx&action=default&mobileredirect=true
https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-ga/_layouts/15/Doc.aspx?sourcedoc=%7B9AA1B55D-068A-4D45-92ED-8F688B0D26B5%7D&file=SILVANUS_D4.2%20-%20Demonstration%20of%20social%20media%20analytics%20for%20localising%20the%20origin%20of%20wildfire%20ignition_v1.pdf.docx&action=default&mobileredirect=true
https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-ga/_layouts/15/Doc.aspx?sourcedoc=%7B9AA1B55D-068A-4D45-92ED-8F688B0D26B5%7D&file=SILVANUS_D4.2%20-%20Demonstration%20of%20social%20media%20analytics%20for%20localising%20the%20origin%20of%20wildfire%20ignition_v1.pdf.docx&action=default&mobileredirect=true
https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-ga/_layouts/15/Doc.aspx?sourcedoc=%7B6A3D2868-2E92-4F9B-944C-32BEBE17E5D9%7D&file=D4_4_V1_0.docx&action=default&mobileredirect=true

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 55 | 78

2.3.3.6 RabbitMQ queue size

The pika python package used in Figure 14 and Figure 15 has the ability to check how many

messages are present inside a queue. An example of this can be seen in Figure 21. Once the

queue is declared then the command “.method.message_count” will retrieve the number of

messages found inside a queue. This does not allow one to see the contents of messages.

Figure 21: Number of messages inside a queue

2.3.4 Update Function

The SAL system allows users to update existing data in the database. This can be done by

sending the new data under the old UUID to a specific url. An example of code for this would

be Figure 14 with the following url http://10.20.20.3:30515/metadata/ingest

2.3.5 Delete on Demand

The Delete on Demand feature can be used to remove metadata and S3 data associated with

a specific UUID. Please refer to Figure 22 for the metadata format. Figure 23 displays a list of

UUIDs that need to be deleted separated by enter. These UUIDs should be saved in a TXT file.

This should be sent to the address http://10.20.20.3:30515/metadata/ingest.

Figure 22:Delete on Demand metadata

Figure 23: Delete on Demand data.

Dummy data can be marked with an expiry flag seen highlighted in Figure 24. This data will be

deleted regularly.

http://10.20.20.3:30515/metadata/ingest
http://10.20.20.3:30515/metadata/ingest

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 56 | 78

Figure 24: Data marked with uuid flag

2.4 SILVANUS platform cloud infrastructure
In order to host the development environment described in Sections 0 and 2.2 and deploy the

SILVANUS components reported in Section 1.2 a Kubernetes cluster has been installed on

nodes provided by Hetzner Cloud VPS hosting3. The overall process involved several steps,

including setting up the Hetzner Cloud environment, provisioning the virtual machines (VMs),

and then installing and configuring Kubernetes on these VMs. The resulting topology is shown

in Figure 25.

Figure 25: SILVANUS hosted cloud infrastructure (staging and production Kubernetes clusters)

To implement a robust security framework that includes network segmentation, traffic

filtering, VPN access, intrusion detection, and comprehensive monitoring we integrated

pfSense Open-Source Firewall and router software with the SILVANUS Kubernetes cluster as

shown in Figure 25. This layered approach significantly enhances the security posture of the

Kubernetes environment. The set-up of pfSense included a number of steps as follows:

• pfSense installation and basic configuration,

• Network Configuration (creating VLANs for Kubernetes Components and interface

configuration),

3 https://www.hetzner.com/cloud/

Cloud Storage

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 57 | 78

• Firewall rule creation to restrict access to the Kubernetes API server and isolate

Kubernetes nodes,

• Setting up of NAT and port forwarding,

• Configuration of intrusion detection and prevention,

• Configuration of monitoring and alerts.

An instance of the SILVANUS pfSence dashboard is shown in Figure 26.

Figure 26: pfSense dashboard

In Figure 27 we show the Kubernetes nodes of the staging cluster and the namespaces on

them.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 58 | 78

(a)

(b)

Figure 27: a) Kubernetes nodes of the staging cluster and b) the namespaces on them

Having configured the SILVANUS cluster of Kubernetes nodes we monitor the status of

deployments using the Kubernetes dashboard, which provides a visual and interactive way to

manage and monitor various resources within the Kubernetes cluster, including Pods,

Deployments, Ingress resources, and Workloads. An example snapshot of the SILVANUS

platform monitoring the above resources is shown in Figure 28.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 59 | 78

(a)

(b)

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 60 | 78

(c)

(d)

Figure 28: Snapshot of the SILVANUS platform monitoring a) Pods, b) Deployments, c) Ingress resources, d) and

Workloads.

Managing storage is distinct from managing compute instances. The PersistentVolume

subsystem in Kubernetes provides an API to abstract the details of storage provision and

consumption through two key resources: PersistentVolume (PV) and PersistentVolumeClaim

(PVC).

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 61 | 78

• PersistentVolume (PV): A PV is a storage unit in the cluster, provisioned by an

administrator or dynamically via Storage Classes. It is independent of any specific Pod

and can use various storage backends like NFS, iSCSI, or cloud-based storage.

• PersistentVolumeClaim (PVC): A PVC is a user's request for storage, specifying size and

access modes (e.g., ReadWriteOnce, ReadOnlyMany). PVCs consume PV resources

similar to how Pods consume node resources.

To accommodate different storage needs, such as varying performance requirements, the

StorageClass resource allows cluster administrators to offer diverse types of PVs without

exposing implementation details to users. In Figure 29.

Figure 29: Snapshot of Persistent Volume Claims (PVCs) on the SILVANUS cluster.

Section 2.3.1.1.1 described the use of MinIO object store to serve as the central repository

within SILVANUS for storing both raw and processed data managed through the standard S3

storage API. An instance of its usage demonstrating the number of buckets deployed, objects

stored, servers and drives deployed is shown in Figure 30.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 62 | 78

Figure 30: Monitoring instance of minIO object store on the SILVANUS cluster.

To visualize and manage Kubernetes cluster metrics we used Grafana, which is a popular open-

source platform for monitoring and observability with a number of pre-built and custom

dashboards that can help monitor various aspects of the cluster's health, performance, and

resource utilization. A screenshot of the SILVANUS platform resource visualization on the

Grafana dashboard is shown in Figure 31.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 63 | 78

(a)

(b)

Figure 31: a) SILVANUS cluster performance metrics monitored and b) SILVANUS VPN network statics on Grafana

Since the SILVANUS platform evolves over time following the DevOps methodology described

in section 2.2 the amounts of resources listed above and their utilization changes dynamically

over time. Therefore, the SILVANUS cluster may scale dynamically in time exploiting the

flexibility of the Kubernetes ecosystem. The latest results on the SILVANUS platform will be

reported on the final version of this deliverable of T8.5 (D8.5) documenting the final platform

release.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 64 | 78

3 Conclusions

The current deliverable provides a summary of the software components that comprise

SILVANUS platform version 2, which has been developed based on the final reference

architecture described in D8.3. The details of each component exist in the relevant space in

the GitHub.

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 65 | 78

4 References

[1] SILVANUS D8.3 Report on final SILVANUS reference architecture, 03/2024

[2] GitHub, "GitHub," GitHub, [Online]. Available: https://github.com/about [Accessed 17

05 2022]

[3] Git, "Git," [Online]. Available: https://git-scm.com/ [Accessed 24 04 2019].

[4] https://venakatreleaf.sharepoint.com/:x:/r/sites/silvanus-

ga/Shared%20Documents/General/Work%20Packages/WP5/T5.1/metadata_field_

meaning.xlsx?d=w217b70c16b8041eb8467c7690c87b2cf&csf=1&web=1&e=IXEjuZ

[5] https://venakatreleaf.sharepoint.com/sites/silvanus-

ga/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Wk5Hiq&cid=d3cc

6c3e%2D3e07%2D4209%2Dbf21%2Db085ed3bbcb1&RootFolder=%2Fsites%2Fsilvan

us%2Dga%2FShared%20Documents%2FGeneral%2FWork%20Packages%2FWP5%2F

5%2Dth%20GA&FolderCTID=0x01200021B059F7C183DD4BAA105110A018229B

[6] D4.1 available at: https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-

ga/_layouts/15/Doc.aspx?sourcedoc=%7BF5BF8E62-10F5-461B-AB7A-

6A45F796F8A6%7D&file=SILVANUS_D4.1_v1.0.docx&action=default&mobileredirec

t=true

[7] D4.2 available at: https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-

ga/_layouts/15/Doc.aspx?sourcedoc=%7B9AA1B55D-068A-4D45-92ED-

8F688B0D26B5%7D&file=SILVANUS_D4.2%20-

%20Demonstration%20of%20social%20media%20analytics%20for%20localising%20t

he%20origin%20of%20wildfire%20ignition_v1.pdf.docx&action=default&mobileredi

rect=true

[8] D4.3 available at: https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-

ga/_layouts/15/Doc.aspx?sourcedoc=%7B9AA1B55D-068A-4D45-92ED-

8F688B0D26B5%7D&file=SILVANUS_D4.2%20-

%20Demonstration%20of%20social%20media%20analytics%20for%20localising%20t

he%20origin%20of%20wildfire%20ignition_v1.pdf.docx&action=default&mobileredi

rect=true

[9] D4.4 available at: https://venakatreleaf.sharepoint.com/:w:/r/sites/silvanus-

ga/_layouts/15/Doc.aspx?sourcedoc=%7B6A3D2868-2E92-4F9B-944C-

32BEBE17E5D9%7D&file=D4_4_V1_0.docx&action=default&mobileredirect=true

[10] https://venakatreleaf.sharepoint.com/:u:/r/sites/silvanus-

ga/Shared%20Documents/General/Work%20Packages/WP5/5-th%20GA/UTH-

integration.zip?csf=1&web=1&e=XboZ02

[11] https://docs.github.com/en/actions/learn-github-actions/understanding-github-

actions

[12] source: https://dev.to/techschoolguru/how-to-setup-github-actions-for-go-postgres-

to-run-automated-tests-81o

[13] source: https://www.docker.com/resources/what-container/

[14] [source: https://vnclagoon.com/gitops-why-your-company-should-embrace-it/]

https://venakatreleaf.sharepoint.com/:x:/r/sites/silvanus-ga/Shared%20Documents/General/Work%20Packages/WP5/T5.1/metadata_field_meaning.xlsx?d=w217b70c16b8041eb8467c7690c87b2cf&csf=1&web=1&e=IXEjuZ
https://venakatreleaf.sharepoint.com/:x:/r/sites/silvanus-ga/Shared%20Documents/General/Work%20Packages/WP5/T5.1/metadata_field_meaning.xlsx?d=w217b70c16b8041eb8467c7690c87b2cf&csf=1&web=1&e=IXEjuZ
https://venakatreleaf.sharepoint.com/:x:/r/sites/silvanus-ga/Shared%20Documents/General/Work%20Packages/WP5/T5.1/metadata_field_meaning.xlsx?d=w217b70c16b8041eb8467c7690c87b2cf&csf=1&web=1&e=IXEjuZ
https://venakatreleaf.sharepoint.com/sites/silvanus-ga/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Wk5Hiq&cid=d3cc6c3e%2D3e07%2D4209%2Dbf21%2Db085ed3bbcb1&RootFolder=%2Fsites%2Fsilvanus%2Dga%2FShared%20Documents%2FGeneral%2FWork%20Packages%2FWP5%2F5%2Dth%20GA&FolderCTID=0x01200021B059F7C183DD4BAA105110A018229B
https://venakatreleaf.sharepoint.com/sites/silvanus-ga/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Wk5Hiq&cid=d3cc6c3e%2D3e07%2D4209%2Dbf21%2Db085ed3bbcb1&RootFolder=%2Fsites%2Fsilvanus%2Dga%2FShared%20Documents%2FGeneral%2FWork%20Packages%2FWP5%2F5%2Dth%20GA&FolderCTID=0x01200021B059F7C183DD4BAA105110A018229B
https://venakatreleaf.sharepoint.com/sites/silvanus-ga/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Wk5Hiq&cid=d3cc6c3e%2D3e07%2D4209%2Dbf21%2Db085ed3bbcb1&RootFolder=%2Fsites%2Fsilvanus%2Dga%2FShared%20Documents%2FGeneral%2FWork%20Packages%2FWP5%2F5%2Dth%20GA&FolderCTID=0x01200021B059F7C183DD4BAA105110A018229B
https://venakatreleaf.sharepoint.com/sites/silvanus-ga/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Wk5Hiq&cid=d3cc6c3e%2D3e07%2D4209%2Dbf21%2Db085ed3bbcb1&RootFolder=%2Fsites%2Fsilvanus%2Dga%2FShared%20Documents%2FGeneral%2FWork%20Packages%2FWP5%2F5%2Dth%20GA&FolderCTID=0x01200021B059F7C183DD4BAA105110A018229B
https://venakatreleaf.sharepoint.com/sites/silvanus-ga/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Wk5Hiq&cid=d3cc6c3e%2D3e07%2D4209%2Dbf21%2Db085ed3bbcb1&RootFolder=%2Fsites%2Fsilvanus%2Dga%2FShared%20Documents%2FGeneral%2FWork%20Packages%2FWP5%2F5%2Dth%20GA&FolderCTID=0x01200021B059F7C183DD4BAA105110A018229B
https://venakatreleaf.sharepoint.com/:u:/r/sites/silvanus-ga/Shared%20Documents/General/Work%20Packages/WP5/5-th%20GA/UTH-integration.zip?csf=1&web=1&e=XboZ02
https://venakatreleaf.sharepoint.com/:u:/r/sites/silvanus-ga/Shared%20Documents/General/Work%20Packages/WP5/5-th%20GA/UTH-integration.zip?csf=1&web=1&e=XboZ02
https://venakatreleaf.sharepoint.com/:u:/r/sites/silvanus-ga/Shared%20Documents/General/Work%20Packages/WP5/5-th%20GA/UTH-integration.zip?csf=1&web=1&e=XboZ02
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://dev.to/techschoolguru/how-to-setup-github-actions-for-go-postgres-to-run-automated-tests-81o
https://dev.to/techschoolguru/how-to-setup-github-actions-for-go-postgres-to-run-automated-tests-81o
https://www.docker.com/resources/what-container/

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 66 | 78

Appendix 1. Example of integration workflow

In the example-app4 github repository we have a hello world test application that uses:

• GiHub Actions: For the CI steps of our pipeline. (The CI steps of the staging pipeline are shown
in Figure 32 while for the production pipeline in Figure 33.)

• Flux: For the CD steps of our pipeline in a GitOps manner.

Repository Structure

The Git repository contains the following directories:

• clusters/ directory contains the Flux configuration per cluster

• deploy/base/ directory contains common infra tools and configurations same for both clusters

• deploy/staging/ directory contains the staging .yaml configurations

• deploy/production/ directory contains the production configurations

Dockerfile

We create a Dockerfile file in the root of the repository.

FROM node:8

WORKDIR /app

ADD . /app

RUN npm install

EXPOSE 3000

CMD npm start

Kubernetes Manifest

We create the k8s .yaml configuration files in the deploy directories depending on the cluster we want

to deploy.

Deployment

• In the deploy/staging directory:
apiVersion: apps/v1

kind: Deployment

metadata:

 name: example-app

 labels:

 app: example-app

spec:

 replicas: 1

 selector:

 matchLabels:

 app: example-app

 template:

 metadata:

 labels:

 app: example-app

 spec:

4 https://github.com/silvanus-prj/example-app

https://github.com/silvanus-prj/example-app

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 67 | 78

 containers:

 - name: example-app

 image: silvanusproject/example-app:v1.0.1

 imagePullPolicy: IfNotPresent

 ports:

 - name: nodejs-port

 containerPort: 3000

 imagePullSecrets:

 - name: regcred

• In the deploy/production directory we have the same deployment, but with 3 replicas instead of
1. The image tag is e.g. example-app:RELEASE-v1.0.1.

Service

In the deploy/base directory we have the ClusterIP service:

apiVersion: v1

kind: Service

metadata:

 name: example-app-service

spec:

 ports:

 - port: 31001

 targetPort: nodejs-port

 protocol: TCP

 selector:

 app: example-app

Ingress

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: example-app-ingress

spec:

 ingressClassName: nginx

 tls:

 - hosts:

 - example-app.platform.silvanus-project.eu

 rules:

 - host: example-app.platform.silvanus-project.eu

 http:

 paths:

 - pathType: Prefix

 path: "/"

 backend:

 service:

 name: example-app-service

 port:

 number: 31001

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 68 | 78

Figure 32: Staging CI/CD

CI/CD Pipelines

Figure 33: Production CI/CD

Repository Secrets

We should add some actions secrets for log-in to DockerHub. These are shown in Figure 34. In the

GitHub Repository, go to Settings -> Secrets -> Actions

• DOCKERHUB_USERNAME: silvanusproject

• DOCKERHUB_TOKEN: **********

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 69 | 78

Figure 34 Repository Secrets

CI with GitHub Actions

We create a ci.yml file in the .github/workflows directory of the repository.

Events that trigger the workflow:

name: ci
on:
 release:
 types: [published]
 push:
 branches: ["main"]
 tags: ['v*.*.*']

For example, this workflow will run when someone pushes to main, pushes tags or publishes a release.

Environment variables used from job:

env:
 REGISTRY: docker.io
 IMAGE_NAME: ${{secrets.DOCKERHUB_USERNAME}}/

${{github.event.repository.name }}

Job & Steps:

jobs:
 docker:
 if: github.event.head_commit.author.name != 'fluxcdbot'
 runs-on: [self-hosted]

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 70 | 78

 steps:
 - name: Checkout repository
 uses: actions/checkout@v3

 - name: Set up QEMU
 uses: docker/setup-qemu-action@v2

 - name: Setup Docker buildx
 uses: docker/setup-buildx-action@v2
 with:
 driver: docker

 - name: Test
 run: echo "::debug::Here goes your test actions"

 - name: Lint
 run: echo "::debug::Here goes your lint actions"

 - name: Log into DockerHub
 if: github.ref_name != 'main'
 uses: docker/login-action@v2
 with:
 registry: ${{ env.REGISTRY }}
 username: ${{ secrets.DOCKERHUB_USERNAME }}
 password: ${{ secrets.DOCKERHUB_TOKEN }}

 - name: Extract Docker metadata
 id: meta
 uses: docker/metadata-action@v4
 with:
 images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}

 - name: Build and Push Docker image (main and tags)
 if: ${{ github.event_name != 'release' }}
 id: build-and-push-tags
 uses: docker/build-push-action@v3
 with:
 context: .
 push: ${{ github.ref_name != 'main' }}
 tags: ${{ steps.meta.outputs.tags }}

 - name: Build and Push Docker image (releases)
 if: ${{ github.event_name == 'release' }}
 id: build-and-push-releases
 uses: docker/build-push-action@v3
 with:
 context: .
 push: ${{ github.ref_name != 'main' }}
 tags: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:RELEASE-${{
github.ref_name }}, ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:latest

For example, this job will run the following steps on a self-hosted runner according to event trigger.

• Pushes to main

◦ Checkout

◦ Setup Requirements

◦ Test

◦ Lint

◦ Docker Build

• Pushes tag

◦ Checkout

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 71 | 78

◦ Setup Requirements

◦ Test

◦ Lint

◦ Docker Build

◦ Docker Push with tags: latest and tag_name

(silvanusproject/example-app:latest, silvanusproject/example-app:v1.0.1)

• Publishes a release from a tag

◦ Checkout

◦ Setup Requirements

◦ Test

◦ Lint

◦ Docker Build

◦ Docker Push with tags: latest and RELEASE-tag_name

(silvanusproject/example-app:latest, silvanusproject/example-app:RELEASE-v1.0.1)

The container image tags will used for the deployment of our application.

CD with Flux

We follow the Automate image updates to Git guide from official Flux docs in order to automate the

deployment stage of our application to staging and to production cluster.

We configure Flux to:

1) Checks the Git repository and produce an artifact for a revision (GitRepository)

2) Scan the container registry and fetch the image tags (ImageRepository)

3) Select the latest tag based on the semver policy (ImagePolicy)

4) Replace the tag in Kubernetes manifests, checkout a branch, commit and push the changes to the

remote Git repository (ImageUpdateAutomation)

5) Apply the changes and rollout the container image (Reconcile Kustomization)

Git Repository

Before we deploy the GitRepository, we should create a secret in the same namespace, with our

username and a GitHub personal access token (PAT) with repo permissions. See the GitHub

documentation on creating a personal access token.

apiVersion: v1

kind: Secret

metadata:

 name: example-app-auth

 namespace: silvanus-wp08

type: Opaque

data:

 username: < Base64_encoded_username >

 password: < Base64_encoded_pat >

apiVersion: source.toolkit.fluxcd.io/v1beta2

kind: GitRepository

metadata:

 name: example-app

 namespace: silvanus-wp08

spec:

https://fluxcd.io/flux/guides/image-update/
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token#creating-a-personal-access-token-classic

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 72 | 78

 interval: 5m

 url: https://github.com/silvanus-prj/example-app

 ref:

 branch: main

 secretRef:

 name: example-app-auth

• A GitRepository named example-app is created, indicated by the .metadata.name field.

• The source-controller checks the Git repository every five minutes, indicated by the

.spec.interval field.

• It clones the main branch of the https://github.com/silvanus-prj/example-app repository,

indicated by the .spec.ref.branch and .spec.url fields.

• The .spec.secretRef.name field specifies the name reference of the above Secret containing

the authentication credentials for the Git repository.

For more information see Git Repositories.

Image Repository

We create an Image Repository to tell Flux which container registry to scan for new tags.

apiVersion: image.toolkit.fluxcd.io/v1beta1

kind: ImageRepository

metadata:

 name: example-app

 namespace: silvanus-wp08

spec:

 image: silvanusproject/example-app

 interval: 1m0s

 secretRef:

 name: regcred

This example fetches metadata for the private image silvanusproject/example-app every minute.

For the silvanusproject private images, we have created a Kubernetes secret in the same namespace.

So, we configure Flux to use the credentials by referencing the Kubernetes secret in the

.spec.secretRef.name field.

For more information see Image Repositories.

Image Policy

We create an ImagePolicy to tell Flux which semver range to use when filtering tags

• Staging Cluster: vx.x.x

apiVersion: image.toolkit.fluxcd.io/v1beta1

kind: ImagePolicy

metadata:

 name: example-app

 namespace: silvanus-wp08

spec:

 imageRepositoryRef:

 name: example-app

 policy:

https://fluxcd.io/flux/components/source/gitrepositories/
https://fluxcd.io/flux/components/image/imagerepositories/

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 73 | 78

 semver:

 range: vx.x.x

• Production Cluster: RELEASE-vx.x.x

apiVersion: image.toolkit.fluxcd.io/v1beta1

kind: ImagePolicy

metadata:

 name: example-app

 namespace: silvanus-wp08

spec:

 imageRepositoryRef:

 name: example-app

 filterTags:

 extract: $version

 pattern: ^RELEASE-(?P<version>v?\d+\.\d+.\d+[a-zA-Z]*)$

 policy:

 semver:

 range: '*'

For other policies that make use of CalVer, build IDs or alphabetical sorting, have a look at the

examples5.

Then, we should edit the deployment.yaml and add a marker to tell Flux which policy to use when

updating the container image:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: example-app

 labels:

 app: example-app

spec:

 replicas: 1

 selector:

 matchLabels:

 app: example-app

 template:

 metadata:

 labels:

 app: example-app

 spec:

 containers:

 - name: example-app

 image: silvanusproject/example-app:v1.0.1 # {"$imagepolicy":

"silvanus-wp08:example-app"}

 imagePullPolicy: IfNotPresent

 ports:

 - name: nodejs-port

 containerPort: 3000

 imagePullSecrets:

 - name: regcred

For more information see Image Policies.

Image Update Automation

5 https://fluxcd.io/flux/components/image/imagepolicies/#examples

https://fluxcd.io/flux/components/image/imagepolicies/#examples
https://fluxcd.io/flux/components/image/imagepolicies/#examples
https://fluxcd.io/flux/components/image/imagepolicies/

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 74 | 78

We create an Image Update Automation to tell Flux which Git repository to write image updates to.

The ImageUpdateAutomation type defines an automation process that will update a git repository,

based on image policy objects in the same namespace. The updates are governed by marking fields to

be updated in each YAML file. For each field marked, the automation process checks the image policy

named, and updates the field value if there is a new image selected by the policy.

apiVersion: image.toolkit.fluxcd.io/v1beta1
kind: ImageUpdateAutomation

metadata:

 name: example-app

 namespace: silvanus-wp08

spec:

 interval: 1m0s

 sourceRef:

 kind: GitRepository

 name: example-app

 git:

 checkout:

 ref:

 branch: main

 commit:

 author:

 email: fluxcdbot@users.noreply.github.com

 name: fluxcdbot

 messageTemplate: '{{range .Updated.Images}}{{println .}}{{end}}'

 push:

 branch: main

 update:

 path: ./deploy/staging

 strategy: Setters

The sourceRef field refers to the GitRepository object that has details on how to access the Git

repository to be updated. The required field interval gives a period for automation runs.

Strategy “Setters” uses field markers referring to image policies, as described before. The

.spec.update.path field specifies the path to the directory containing the manifests to be updated.

• For staging: ./deploy/staging

• For production: ./deploy/production

For more information see Image Update Automations6.

Kustomization

The Kustomization is the most important Custom Resource Definition, because it reconciles on the

cluster the Kubernetes manifests stored in a Git repository.

apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

kind: Kustomization

metadata:

 name: example-app

 namespace: silvanus-wp08

spec:

 interval: 5m

 targetNamespace: silvanus-wp08

 sourceRef:

 kind: GitRepository

6 https://fluxcd.io/flux/components/image/imageupdateautomations/

https://fluxcd.io/flux/components/image/imageupdateautomations/

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 75 | 78

 name: example-app

 path: "./deploy/staging"

 prune: true

apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

kind: Kustomization

metadata:

 name: example-app-base

 namespace: silvanus-wp08

spec:

 interval: 5m

 targetNamespace: silvanus-wp08

 sourceRef:

 kind: GitRepository

 name: example-app

 path: "./deploy/base"

 prune: true

• A Flux Kustomization named example-app is created that watches the axample-app
GitRepository for artifact changes in the path ./deploy/staging. (For production we have
./deploy/production).

• A Flux Kustomization named example-app is created that watches the example-app
GitRepository for artifact changes in the path ./deploy/base. (Same for staging and
production).

• The Kustomization builds the YAML manifests located at the specified spec.path, sets the
namespace of all objects to the spec.targetNamespace, validates the objects against the
Kubernetes API, and finally applies them on the cluster.

• Every 5 minutes, the Kustomization runs a server-side apply dry-run to detect and correct drift
inside the cluster.

• When the Git revision changes, the manifests are reconciled automatically. If previously
applied objects are missing from the current revision, these objects are deleted from the
cluster when spec.prune is enabled.

For more information see Kustomization7.

Summary

The overall Flux configuration described above can be found in the kustomization.yaml file in the

clusters/ directory per cluster.

We can deploy the application with the Flux configuration from the command line:

• Staging:

kubectl apply -f clusters/staging/kustomization.yaml \

--kubeconfig=silvanus_staging_config

• Production:

kubectl apply -f clusters/production/kustomization.yaml \

--kubeconfig=silvanus_production_config

After a few seconds/minutes of applying the previous .yaml file in the cluster, we can visit the

https://example-app.platform.silvanus-project.eu/ and we should see our test web page (Hello World)

with a valid TLS Certificate.

7 https://fluxcd.io/flux/components/kustomize/kustomization/

https://fluxcd.io/flux/components/kustomize/kustomization/
https://example-app.platform.silvanus-project.eu/

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 76 | 78

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 77 | 78

Appendix 2. Example Kubernetes Config Files

Template File

apiVersion: v1

apiVersion: apps/v1

kind: Deployment

metadata:

 name: __BUILD_PIPELINE__

 labels:

 app: __BUILD_PIPELINE__

spec:

 replicas: 3

 selector:

 matchLabels:

 app: __BUILD_PIPELINE__

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 33%

 template:

 metadata:

 labels:

 app: __BUILD_PIPELINE__

 spec:

 containers:

 - name: __BUILD_PIPELINE__

 image: silvanusproject/__BUILD_PIPELINE__

 imagePullPolicy: Always

 env:

 - name: NODE_ENV

 value: __BUILD_PIPELINE__

 ports:

 - containerPort: __SERVICE_PORT__ #internal

 command: ["__START_COMMAND__"]

 args: ["__START_COMMAND_ARGUMENTS__"]

 imagePullSecrets:

 - name: regcred

apiVersion: v1

kind: Service

metadata:

 name: __BUILD_PIPELINE__-service

 annotations:

 load-balancer.hetzner.cloud/name: "staging-lb"

 load-balancer.hetzner.cloud/use-private-ip: "true"

spec:

 selector:

 app: __BUILD_PIPELINE__

 ports:

 - protocol: TCP

 port: __SERVICE_PORT__ #external

 targetPort: __SERVICE_PORT__ #internal

 type: LoadBalancer

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

SILVANUS D8.4 SILVANUS platform release, 2nd version

P a g e 78 | 78

 name: __BUILD_PIPELINE__-ingress

spec:

 ingressClassName: nginx

 tls:

 - hosts:

 - __BUILD_PIPELINE__.platform.silvanus-project.eu

 rules:

 - host: __BUILD_PIPELINE__.platform.silvanus-project.eu

 http:

 paths:

 - pathType: Prefix

 path: "/"

 backend:

 service:

 name: __BUILD_PIPELINE__-service

 serviceName: __SERVICE_PORT__

Variables Details

__namespace__ : Is the network namespace the component should be deployed to. Only components

in the same namespace can see each other, without any extra network configuration (silvanus-wpxx)

__BUILD_PIPELINE__ : The name of the application to be deployed.

__START_COMMAND__: The command the container will run on boot.

__START_COMMAND_ARGUMENTS__: The arguments to pass to the command that will run when the

container first starts up.

__SERVICE_PORT__ #external : The port to expose on the “internet”

__SERVICE_PORT__ #internal : The port to expose the container on the local network. This should
match the port exposed on the Dockerfile (example: EXPOSE 3000 should mean __SERVICE_PORT__ =
3000)

