

D5.3 - Demonstration of SILVANUS decision support system
for response coordination

1st version

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 101037247

Project Acronym SILVANUS

Grant Agreement number 101037247 (H2020-LC-GD-2020-3)

Project Full Title Integrated Technological and Information Platform for
Wildfire Management

Funding Scheme IA – Innovation action

DELIVERABLE INFORMATION

Deliverable Leader: INTRA

Lead Author(s) INTRA, AMIKOM, UTH, DELL

Reviewers ITTI, EDP, IS

Deliverable Number: D5.3

Deliverable Name: Demonstration of SILVANUS decision support system for
response coordination 1st version

Dissemination level: PU

Type of Document: DEM

Contractual date of delivery: 30/09/2023 (M20)

Date of submission:

Deliverable Leader: INTRA

Status: ToC

Version number: Final

WPLeader/ TaskLeader: DELL/INTRA

Keywords Decision Support Systems, Data Fusion, Geographical Information
Systems, Situational Awareness, Response Coordination

Abstract This deliverable focuses on the demonstration of the tools developed
for the SILVANUS decision support system for response coordination.
The DSS tools are mainly the results of Task T5.4 and their
implementation is based on integration of the SILVANUS firmware
developed, the SILVANUS Knowledge Base and the real-time
monitoring dashboard. This deliverable contains the description of the
first version of the data toolkit while the final version will be reported
in D5.5 planned to be submitted on M36.

Disclaimer
All information in this document is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. For the avoidance of all
doubts, the European Commission has no liability in respect of this document, which is merely
representing the authors‘ view.

Document History

Version Date Contributor(s) Description

V0.1 12.06.2023 INTRA ToC

V0.2 08.08.2023 AMIKOM
Sections 2, 4

V0.3 18.08.2023 UTH
Sections 5, 6

V1 23.08.2023 INTRA
Section 3 and integration of contributions

V1.1 15.09.2023 CTL, AMIKOM, UTH
Updated Section 2, 3, 5, 6 contributions

V2 18.09.2023 INTRA
Integration of updated contributions

Final 29.09.2023 INTRA
Integration of review comments

TABLE OF CONTENTS

TABLE OF CONTENTS .. 5

TABLE OF FIGURES .. 7

LIST OF ACRONYMS .. 10

EXECUTIVE SUMMARY... 12

1. Introduction ... 13

2. Information fusion through the SILVANUS Knowledge Base .. 15

2.1. Concept of operation .. 15

2.2. SW implementation and results .. 15

2.2.1. Semantic Data Integration ... 15

2.2.2. Application Scenario .. 19

2.2.3. Rules design and implementation ... 21

2.3. Component integration ... 23

2.4. Plans for future extensions .. 23

3. Data fusion using Bayesian models and Monte-Carlo simulations 25

3.1. Concept of operation .. 25

3.1.1. Data Acquisition and Processing Method ... 25

3.1.2. Concept and Mathematical Modelling: Fuzzy Logic, Montecarlo and Bayes
Method 28

3.2. SW implementation and results .. 33

3.3. Component integration ... 49

3.4. Data Fusion Future Plan .. 51

4. Resource allocation of response teams .. 53

4.1. Concept of operation .. 53

4.1.1. Data Structures .. 53

4.2. SW implementation and results .. 54

4.2.1. Population based geographical distribution of impact risk estimation 54

4.2.2. Multi-objective optimization based Resource Allocation (MORA).................. 56

4.3. Component integration ... 63

4.4. Plans for future extensions .. 63

5. Stakeholder notification decision on fire incidents using multilingual textual framework
 65

5.1. Concept of operation .. 65

5.2. SW implementation and results .. 66

5.2.1. Datasets ... 66

5.2.2. Training Model .. 73

5.2.3. Implementation Model ... 86

5.3. Component integration ... 89

5.4. Plans for future extensions .. 89

6. Health Impact Component .. 90

6.1. Concept of operation .. 90

6.2. System implementation and results .. 91

6.2.1. Air Quality Monitoring System .. 91

6.2.2. Raspberry-Pi .. 95

6.2.3. Sensors configuration .. 96

6.2.4. Raspberry Pi implementation .. 97

6.2.5. Complete air quality monitoring system ... 97

6.3. Sensors – Attached to vehicles or ground ... 106

6.3.1. Smart Spot ... 106

6.3.2. 2. Smart Spot configuration... 107

6.3.3. Smart Spot technical dashboard ... 107

6.3.4. Smart Spot MQTT Broker .. 108

6.4. Component integration ... 111

6.5. Plans for future extensions .. 111

7. Evacuation route planning .. 112

7.1. Concept of operation .. 112

7.2. SW implementation and results .. 112

7.2.1. Smoke dispersion .. 112

7.2.2. Evacuation route planning... 118

7.3. SW implementation and results .. 121

7.3.1. Smoke dispersion .. 121

7.3.2. Evacuation route planning... 127

7.4. Component integration ... 142

7.5. Plans for future extensions .. 142

8. Conclusions .. 143

9. References ... 144

TABLE OF FIGURES

FIGURE 1: KBIF WITHIN T5.2 .. 16
FIGURE 2: CASPAR ARCHITECTURE .. 17
FIGURE 3: ONTOTEXT’S GRAPHDB ENVIRONMENT FOR VISUALIZING RDF TRIPLES FOR CROATIAN PILOT DATA. 19
FIGURE 4: MAPPING OF FIRE INCIDENT LOCATION WITH CORRESPONDING INFORMATION TAB 20
FIGURE 5: GEOGRAPHICAL PLACEMENT OF HEALTH MONITORING DEVICES WITH ASSOCIATED INFORMATION TABS 20
FIGURE 6: PROXIMITY OF HEALTH MONITORING DEVICE TO FIRE INCIDENT LOCATION ... 21
FIGURE 7: RETRIEVE THE FIRE INCIDENTS AND THE CORRESPONDING HEALTH MONITORING ... 22
FIGURE 8: FIRE INCIDENTS AND THE CORRESPONDING HEALTH MONITORING ... 23
FIGURE 9: HIGH-LEVEL PROCESS OF DATA FUSION .. 27
FIGURE 10: SUPPORT, CORE AND HEIGHT OF A FUZZY SET. ... 29
FIGURE 11: ILLUSTRATION OF A-CUT CONCEPT .. 29
FIGURE 12: CONVEX AND NONCONVEX FUZZY SET .. 30
FIGURE 13: INTERSECTION OPERATION OF FUZZY SETS .. 30
FIGURE 14: UNION OPERATION OF FUZZY SETS .. 30
FIGURE 15: COMPLEMENT OF A FUZZY SET ... 31
FIGURE 16: MONTE CARLO FOR INTEGRAL AREA .. 31
FIGURE 17: SCHEME FOR CASE EXAMPLE OF HOW FUZZY LOGIC AND BAYESIAN METHOD WORK. 33
FIGURE 18: BUFFER TOOLS IN ARCGIS PRO .. 35
FIGURE 19: DISTANCE TO SETTLEMENT .. 35
FIGURE 20: DISTANCE TO ROAD ... 36
FIGURE 21: ELEVATION DATA... 36
FIGURE 22: RASTER CALCULATOR TOOLS .. 37
FIGURE 23: FUEL LOAD .. 37
FIGURE 24: NDVI DATA ... 38
FIGURE 25: ASPECT DATA ... 39
FIGURE 26: ASPECT TOOLS IN ARCGIS ... 40
FIGURE 27: SLOPE DATA ... 40
FIGURE 28: SLOPE TOOLS IN ARCGIS PRO .. 41
FIGURE 29: RASTER TO POLYGON TOOLS .. 42
FIGURE 30: GENERATE SHAPEFILE GRID.. 42
FIGURE 31: OVERLAY ALL PARAMETERS TO ONE SHAPEFILE GRID ... 43
FIGURE 32: SPATIAL JOIN TOOLS ... 43
FIGURE 33: EXAMPLE CONVERT SHAPEFILE TO GEOJSON .. 44
FIGURE 34: DISTANCE TO SETTLEMENT .. 44
FIGURE 35: DISTANCE TO ROAD .. 44
FIGURE 36: POPULATION DENSITY .. 45
FIGURE 37: GDP ... 45
FIGURE 38: HISTORICAL FIRE .. 45
FIGURE 39: PRECIPITATION ... 45
FIGURE 40: TEMPERATURE .. 45
FIGURE 41: ELEVATION ... 45
FIGURE 42: FUEL LOAD ... 46
FIGURE 43: ASPECT ... 46
FIGURE 44: SLOPE ... 46
FIGURE 45: NDVI ... 46
FIGURE 46: LAND USAGE ... 46
FIGURE 47: VEGETATION TYPE ... 46
FIGURE 48: USER INTERFACE FOR PARAMETER INITIALIZATION AND APPLICATION EXECUTION...................................... 47
FIGURE 49: FIRE PROBABILITY .. 48
FIGURE 50: PRIORITY RESOURCE .. 48

FIGURE 51: DETAILED DATA OF A VARIABLE .. 49
FIGURE 52: OVER TIME DATA .. 49
FIGURE 53: EXTENDED PROCESS FOR DATA FUSION .. 51
FIGURE 54 - RESOURCE ALLOCATION DIAGRAM .. 53
FIGURE 55 - RESOURCE ALLOCATION INPUT RASTER .. 54
FIGURE 56 - POC VALIDATION SCENARIO ... 55
FIGURE 57 - POC EXAMPLE INPUTS .. 55
FIGURE 58 - POC EXAMPLE OUTPUT (PER CELL CRITICALITY INDEX) ... 56
FIGURE 59 – MORA VALIDATION SCENARIO (A) AREA UNDER EXAMINATION (B) FIRE SPREAD MODEL (C) POPULATION

DISTRIBUTION ... 61
FIGURE 60 – CELL PARAMETERS FOR THE AREA UNDER EVALUATION: (A) CELL INDEXES (B) FIRE ARRIVAL TIME PER CELL (IN

MULTIPLES OF THE BASIC PERIOD) (C) POPULATION DENSITIES .. 61
FIGURE 61 - RESOURCE TYPES EXAMPLE .. 61
FIGURE 62 - RESOURCE ALLOCATION OPTIMAL SOLUTION ... 62
FIGURE 63 – INPUT AND OUTPUT OF RESOURCE ALLOCATION DSS ... 63
FIGURE 64: FRAMEWORK OF SOCIAL MEDIA SENSING ... 66
FIGURE 65: DATA DISTRIBUTION EACH CLASS .. 67
FIGURE 66: WORD LENGTH DISTRIBUTION .. 68
FIGURE 67: NER ENGLISH DATASET PREVIEW ... 69
FIGURE 68: DATA DISTRIBUTION EACH CLASS .. 70
FIGURE 69: WORD LENGTH DISTRIBUTION .. 71
FIGURE 70: DATA DISTRIBUTION EACH CLASS .. 72
FIGURE 71: WORD LENGTH DISTRIBUTION .. 73
FIGURE 72: LANGUAGE DATASETS DISTRIBUTION ... 73
FIGURE 73: MEMORY CELL OF LSTM .. 76
FIGURE 74: MEMORY CELL OF GRU ... 77
FIGURE 75: BIDIRECTIONAL RNNS STRUCTURE ... 77
FIGURE 76: BIDIRECTIONAL LSTM CLASSIFICATION REPORT ... 79
FIGURE 77: KERAS MODEL SUMMARY OF SPANISH FIRE PREDICTION .. 80
FIGURE 78: LOSS AND ACCURACY OF SPANISH FIRE PREDICTION MODEL TRAINING .. 80
FIGURE 79: SPANISH FIRE PREDICTION CLASSIFICATION REPORT .. 80
FIGURE 80: KERAS MODEL SUMMARY OF ITALIAN FIRE PREDICTION ... 81
FIGURE 81: LOSS AND ACCURACY OF ITALIAN FIRE PREDICTION MODEL TRAINING ... 82
FIGURE 82: ITALIAN FIRE PREDICTION CLASSIFICATION REPORT .. 82
FIGURE 83: BILSTM AND CRF FOR LOCATION EXTRACTION ... 83
FIGURE 84: ACCURACY AND LOSS TRAINING .. 84
FIGURE 85: CLASSIFICATION REPORT OF NER USING BILSTM AND CRF .. 84
FIGURE 86: ENGLISH LOCATION DETECTION ARCHITECTURE .. 85
FIGURE 87: CLASSIFICATION REPORT FOR ENGLISH NER MODEL ... 85
FIGURE 88: API CLASSIFICATION FOR FIRE .. 86
FIGURE 89: ENTITY RECOGNITION API ... 87
FIGURE 90: DIAGRAM CONCEPT OF SOCIAL MEDIA SENSING ... 88
FIGURE 91: HEALTH IMPACT COMPONENT – USE CASE ... 91
FIGURE 92: TABLE OF EUROPEAN AIR QUALITY INDEX (BASED ON POLLUTANT CONCENTRATIONS IN µG/M3) 92
FIGURE 93: GAS SENSORS SPECIFICATIONS ... 94
FIGURE 94: GAS SENSOR COMPONENTS .. 94
FIGURE 95:GAS DETECTION SENSOR ... 94
FIGURE 96: (A) BACK VIEW OF THE LASER SENSOR, (B) FRONT VIEW OF THE ADAPTOR, (C) BACK VIEW OF THE ADAPTOR,

(D) OVERALL COMPONENTS .. 95
FIGURE 97: GPIO PINS .. 96
FIGURE 98: AIR QUALITY OBSERVATION SYSTEM ... 97
FIGURE 99: INTERIOR SYSTEM AND COMPONENTS ... 98
FIGURE 100: VM CHARACTERISTICS AND INTEGRATED COMPONENTS .. 99

FIGURE 101: /INSERT ENDPOINT SENT JSON FILE .. 101
FIGURE 102: /GET-LATEST-DATA ENDPOINT RETRIEVED JSON.. 102
FIGURE 103: /AQI ENDPOINT RETRIEVED JSON FILE ... 102
FIGURE 104: DATA.JSON FILE ... 104
FIGURE 105: META-DATA.JSON FILE .. 105
FIGURE 106: VISUALIZATION WEBPAGE ... 105
FIGURE 107: SMART SPOT - IOT DEVICE FOR ENVIRONMENTAL PARAMETER SENSING ... 107
FIGURE 108: VISUALIZATION DASHBOARD (O3) .. 108
FIGURE 109: VISUALIZATION DASHBOARD (PM2.5) .. 108
FIGURE 110: BROKER DEPLOYMENT AND CONFIGURATION .. 109
FIGURE 111: MQTT EXPLORER CLIENT ... 110
FIGURE 112: JSON FILE ... 110
FIGURE 113: PYTHON’S PAHO PACKAGE .. 111
FIGURE 114: SMOKE DISPERSION MODELING PROCESS (GOOD PRACTICE GUIDE, 2004) ... 113
FIGURE 115: GAUSSIAN AIR POLLUTANT DISPERSION PLUME AND COORDINATE SYSTEM (FROM EN.WIKIPEDIA.ORG) 114
FIGURE 116: PLUME RISE (FROM HTTP://WWW-PERSONAL.UMICH.EDU/~WEBERG/EFF_STACK_HEIGHT.HTM) 114
FIGURE 117: CURVES OF ΣY AND ΣZ FOR STABILITY CLASSES AS A FUNCTION OF DISTANCE FROM THE SOURCE (VARMA, M. S.

A. K. 2014). ... 116
FIGURE 118: DIFFERING WIND FLUCTUATIONS .. 117
FIGURE 119: MULTIPLE WILDFIRE SOURCES .. 117
FIGURE 120: VERTICAL STABILITY EFFECTS .. 118
FIGURE 121: EVACUATION ROUTE PLANNING MODULE TRIGGERING .. 119
FIGURE 122: EVACUATION ROUTE PLANNING INTERACTIONS ... 119
FIGURE 114: SMOKE DISPERSION MODELING PROCESS (GOOD PRACTICE GUIDE, 2004) ... 122
FIGURE 115: GAUSSIAN AIR POLLUTANT DISPERSION PLUME AND COORDINATE SYSTEM (FROM EN.WIKIPEDIA.ORG) 123
FIGURE 116: PLUME RISE (FROM HTTP://WWW-PERSONAL.UMICH.EDU/~WEBERG/EFF_STACK_HEIGHT.HTM) 123
FIGURE 117: CURVES OF ΣY AND ΣZ FOR STABILITY CLASSES AS A FUNCTION OF DISTANCE FROM THE SOURCE (VARMA, M. S.

A. K. 2014). ... 125
FIGURE 118: DIFFERING WIND FLUCTUATIONS .. 126
FIGURE 119: MULTIPLE WILDFIRE SOURCES .. 126
FIGURE 120: VERTICAL STABILITY EFFECTS .. 127
FIGURE 121: EVACUATION ROUTE PLANNING MODULE TRIGGERING .. 128
FIGURE 122: EVACUATION ROUTE PLANNING INTERACTIONS ... 128
FIGURE 123: GEOJSON OUTPUT EXAMPLE WITH CORRESPONDING MAP .. 130
FIGURE 124: POST REQUEST TO /EVACUATIONS/SMOKE-FIRE ENDPOINT (2 SOURCES) ... 131
FIGURE 125: GEOJSON RESPONSE FROM SIMPLE DIRECTIONS ENDPOINT CALL. ... 134
FIGURE 126: GEOJSON RESPONSE FROM CUSTOMIZED PARAMETERS. ... 136
FIGURE 127: CURL CALL TO /EVACUATIONS/CITIES ENDPOINT ... 137
FIGURE 128: CURL CALL TO /EVACUATIONS/ROUTES ENDPOINT ... 137
FIGURE 129: CITIES AND AVAILABLE ROUTES IN NORTHERN EUBOEA ... 138
FIGURE 130: FIRE SPREAD AND SMOKE DISPERSION PROGRESSION (EXP.1) ... 139
FIGURE 131: ROUTES CHARACTERIZATION (EXP.1) .. 140
FIGURE 132: EXP.2 SETTING ... 140
FIGURE 133: ROUTES CHARACTERIZATION(EXP.2) ... 140
FIGURE 134: ROUTES COMPARISON .. 141
FIGURE 135: GEOJSON SAMPLE OF A ROUTE ... 142

LIST OF ACRONYMS

Terminology/Acronym Description

AQI Air Quality Index

COP Constrained Optimization Problem

CPU Central Processing Unit

CRF Conditional Random Forest

DEM Digital Elevation Model

DSS Decision Support System

EVI Enhanced Vegetation Index

GDP Gross Domestic Product

GIS Geographical Information System

GPS Global Positioning System

GPU General Processing Unit

GRU Gated Recurrent Units

HRF Human-Related Factors

I2C Inter-Integrated Circuit

IoT Internet of Things

KB Knowledge Base

KBIF Knowledge Base Information Fusion

LSTM Long Short-Term Memory

MORA Multi-Objective based Resource Allocation

NDVI Normalized Difference Vegetation Index

NER Named Entity Recognition

NIR Near Infra-Red

NLP Natural Language Processing

NLTK Natural Language Toolkit

OWL Web Ontology Language

PEF Physical-Environmental Factors

PoC Proof of Concept

RDF Resource Description Framework

RNN Recurrent Neural Network

Terminology/Acronym Description

ROS Random Oversampling

SAL Storage Abstraction Layer

SAVI Soil Adjusted Vegetation Index

SMOTE Synthetic Minority Oversampling Technique

SoC System on Chip

SPI Serial to Parallel Interface

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

USGS United States Geological Survey

EXECUTIVE SUMMARY

This is the third deliverable of WP5 focusing on the demonstration of the tools developed for
the SILVANUS decision support system for response coordination. While the tools described
in this deliverable are mainly the results of activities performed in the context of Task T5.4 -
Data toolkit for decision support system, the tool implementation is based on integration of
the SILVANUS firmware developed in the context of Task T5.1 Big-data Analytics framework
for situational awareness on fire danger index, the SILVANUS Knowledge Based developed in
the context of Task T5.2 Semantic framework for information fusion and the real-time
monitoring dashboard developed in the context of Task T5.3 Real-time monitoring of wildfire
behaviour in temporal space for response coordination. This deliverable contains the
description of the first version of the data toolkit while the final version will be reported in
D5.5 planned to be submitted on M36. Six main tools have been developed in the first phase
of the project implementing:

• information fusion through the SILVANUS Knowledge Base,

• data fusion using Bayesian models and Monte-Carlo simulations to model the

probability and intensity of forest fires,

• optimized resource allocation of response teams,

• stakeholder notification on fire incidents using a multilingual textual framework

• health impact assessment, and

• evacuation route planning in case of fire events

The above tools are expected to assist commanders by improving situational awareness and
producing information related to projections about the evolution of wildfires and potential
optimal decisions to react in order to reduce the potential impact mainly focusing on the
potential extension of humans to risks of life and property loses. While the type of the
deliverable is Demonstrator, this report includes both details about the software
implementation of the tools as well as the methodological approach and scientific background
related to the algorithm development and the tools design.

1. Introduction

The objective of task T5.4 of WP5 is to develop analytic algorithms, which can exploit the data
made available by SILVANUS sensors deployed across the forest as well as data made available
through geographic information systems (GIS) and other external data sources to develop
algorithms and methodologies that effectively combine disparate knowledge resources into a
single framework leveraging upon the information fusion algorithms reported in the literature
including (i) data association, (ii) state estimation, and (iii) decision fusion. In addition, the task
also focuses on the resource allocation of response teams in the field depending on the
evolution of the incident and the current status of the available response teams performing
an optimization process for the coverage of the area under consideration and the use of the
available resources upon the data collected by the SILVANUS monitoring components. Finally,
decision making deals with the prediction of the affected areas and the modelling of the
surroundings in order to be able to deliver evacuation paths for the affected people, which
will have functional synergies with some of the outcomes in T5.3. The map of the area will be
the basis for detecting the appropriate routes for evacuation if necessary. The algorithms
developed in T5.4 take into consideration population and underlying geospatial data in order
to avoid proposing evacuation paths that will be overcrowded and minimization of population
exposure to health risks.

The remainder of this document is structured as follows:

Section 2 describes the main tool of SILVANUS to process the data received from disparate
sensors and produce and manage the knowledge developed within SILVANUS to be shared
and exploited for response coordination to control the spread of wildfires. Thus, this tool is an
enabler to incorporate human expertise into automated frameworks. Specifically, this section
describes how the SILVANUS Knowledge Base Information Fusion (KBIF) can support the
promotion of situational awareness and the methodological analysis of results delivered by
various project components.

Section 3 describes data fusion using Bayesian models and Monte-Carlo simulations to model
the probability and intensity of forest fires. Specifically, it describes models of interaction of
multiple factors that contribute to the creation of conditions that increase the probability and
intensity of forest fires and an application that can produce visual results as outcome of these
models to improve situational awareness of decision makers.

Section 4 describes algorithms to optimize resource allocation of response teams based on
the projection of fire-spread that is part of the SILVANUS wildfire management platform. The
geospatial distribution of population and other GIS-related land properties as well as the
distribution of fire units are taken into account and a multi-objective optimization problem
can be formulated and solved in order to lead to cost minimization in terms of the minimum
total risk of fire impact given the available resources to plan for the mitigation of this impact.

Section 5 describes a tool to assist in stakeholder notification on fire incidents using a
multilingual textual framework. This tool can assist in early and effective notification of
citizens exposed to the danger of fire events.

Section 6 describes a methodology to model health impact assessment. This, tool is important
to model the geospatial distribution of dangerous areas during fire events and take proper
actions to mitigate risk of exposing citizens to potential health threats.

Section 7 describes a complementary tool to the one described in section 6 in order to plan
evacuation routes in case of fire events. Following the same objective i.e. to mitigate risk of
exposing citizens to potential health threats, routes on a map can be appropriately planned

to avoid areas under direct fire threat of exposure to health threats based on the temporal
conditions during fire events.

Finally, Section 8 presents the main conclusion of this deliverable.

2. Information fusion through the SILVANUS Knowledge Base

2.1. Concept of operation
A key element of the SILVANUS project is the Knowledge Base Information Fusion (KBIF) from
CTL, which leverages rule-based systems to incorporate human expertise into automated
frameworks. The SILVANUS KBIF functions with the overarching goals of promoting situational
awareness and methodically analyzing results from various project components. Extraction of
subtle insights and cultivation of a common lexicon for depicting actions, scenarios, and
warnings are the main objectives driving the development of the KBIF. The KBIF serves a
crucial role in enabling entities including government agencies, fire and emergency services,
environmental agencies, and health departments to make prompt and informed choices by
unifying tasks.

By integrating project components that are supported by a common vocabulary derived from
the Silvanus ontology (D3.1) and include significant data, this integration provides a uniform
repository of knowledge for those components. This section offers an introductory description
of the Knowledge Base (KB), integrated as a crucial element of the Semantic framework for
information fusion within WP5. Its primary purpose is to establish a singular knowledge
repository that unifies project components, affording each component a shared vocabulary.
The overarching aim is to construct a comprehensive and scalable semantic framework for
information fusion, designed to produce a Resource Description Framework1 (RDF) -based
cohesive semantic KB.

The aforementioned KB, serves as a foundation for decision support and drawing insights from
an array of diverse/heterogeneous sources. It is important to highlight that while this
deliverable provides a detailed view of this decision-making aspect, the comprehensive
overview of the entire KB concept, spanning from start to finish, will be presented in the
upcoming D5.4 "Semantic Information Fusion Framework" (anticipated by M36).

2.2. Software implementation and results

2.2.1. Semantic Data Integration
Semantic Data Integration (also referred to as "semantic data fusion" or "ontology
population") involves the process of infusing the initially vacant semantic model with instance
data sourced from sensors (i.e., raw data) and other SILVANUS analytical components (i.e.,
higher-level data). This section provides an overview of the semantic data integration process
embraced within SILVANUS. A comprehensive exploration of this endeavor will be offered in
forthcoming project deliverables, specifically in D5.4, as previously mentioned.

The workflow, encompassing the KBIF as an integral component of the T5.2 Semantic
framework for information fusion, is visually presented in Figure 1.

1 https://www.w3.org/RDF/

Figure 1: KBIF within T5.2

The SILVANUS ontology and its core concepts were comprehensively outlined in Deliverable
3.1. This semantic framework was developed within the stable Protégé editor environment
and encoded using OWL2. During the entire development period, significant efforts were
devoted to incorporating a wide spectrum of forest and fire-related knowledge and seamlessly
integrating it into a rule-based structure. Through the use of SPARQL3, a dynamic query
language designed to glean insights from data stored in the RDF format, these principles are
carefully stated. The power of SPARQL rests in its capacity to specify complicated patterns
that line up with designated data associations woven into the underlying structure of RDF
graphs.

CASPAR4 (Structured Data Semantic Exploitation Framework), CTL's flexible domain-agnostic
semantic data integration framework, handles the ingestion of inputs into the SILVANUS
Semantic KB. CASPAR has been expanded within SILVANUS to accommodate the project's
specific input needs, such as ingesting data from social media sensing data sources (T4.4) into
the KB, among other data sources. The overall architecture of CASPAR is outlined in Figure 2.
The tool uses a series of connected methods as shown to ingest data into a semantic model:

● Automated Acquisition of Structured Data

● Mapping of Input Data Fields

● Semantic Knowledge Integration

● Enrichment from Linked Open Data Sources

● Rule-Based Semantic Reasoning

2 https://www.w3.org/OWL/

3 https://www.w3.org/TR/rdf-sparql-query/

4 https://caspar.catalink.eu/

Figure 2: CASPAR architecture

In the context of SILVANUS, a standardized JSON structure has been collaboratively developed
and agreed upon with each contributing partner. This structure acts as a container to
encapsulate the distinctive data inputs provided by each partner. These inputs encompass a
wide array of observations spanning domains such as social media insights, fire/smoke
detection from IoT edge devices, and air quality assessments. This structured data is
seamlessly funneled into CASPAR for automated integration into the KB, wherein they
manifest as discrete individuals or objects. Below is an illustrative example of this generic JSON
blueprint, specifically pertaining to CTL's IoT edge device (T4.3):

{

 "uuid": "01879875-7508-7b37-abc5-6f8df91c8ccc",

 "sensor_type": [

 "humidity",

 "temperature",

 "camera"

],

 "range": {

 "value": 5,

 "unit": "meters"

 },

 "timestamp": "2023-03-13T07:41:39.463138Z",

 "location": [

 {

 "placename": "test-pilot",

 "geometry": {

 "type": "Point",

 "coordinates": [

 {

 "lat": 35.1765597,

 "lon": 33.3829851

 }

]

 }

 }

],

 "sensory_data": {

 "temperature": {

 "value": 13.4,

 "unit": "celsius"

 },

 "humidity": {

 "value": 55.5,

 "unit": "percentage"

 },

 "gas_sensor": {

 "smoke": 43.8,

 "liquid_petrolium_gas_lpg": 10.24,

 "methane": 23.12,

 "hydrogen": 23.8,

 "unit": "parts_per_million(ppm)"

 }

 },

 "visual_data": {

 "fire_detection": {

 "contains_fire": false,

 "fire_score": 0.0229,

 "fire_probability": "none"

 },

 "smoke_detection": {

 "contains_smoke": true,

 "smoke_score": 0.9546,

 "smoke_probability": "high"

 },

 "image":

""

 }

}

In this example JSON, the fire probability is denoted as "none" (fire_probability: "none"),
indicating no fire was detected, and the smoke presence is indicated as "true"
(contains_smoke: true), with the smoke probability marked as "high" (smoke_probability:
"high"), meaning there is a high probability the IoT device has detected a smoke event. For a
more detailed explanation of each field, you can refer to D4.1.

At the current stage, CTL reached an important milestone by developing the mechanism to
convert JSON data into RDF triples. As a result of this achievement, KB can effectively be
populated with data from three components: CTL's IoT edge device (Task 4.3), CERTH's social
media sensing (T4.4), and UTH's health monitoring (T5.3).

Additionally, to the (dummy) data utilized for testing, we have successfully incorporated, in
the KB (actual) data from the Croatian pilot site (collected from the IoT edge device). Figure 3,
depicts the RDF triples for the case of the collected data, using Ontotext’s GraphDB5
environment.

5 https://www.ontotext.com/products/graphdb/

Figure 3: Ontotext’s GraphDB environment for visualizing RDF triples for Croatian pilot data.

2.2.2. Application Scenario
This section presents a simple but real-world application scenario that demonstrates how
effectively a User Interface (UI)—in this case, a map—integrated with the KB could possibly
be used. This demonstration aims to underscore the practicality of this integration. The
scenario revolves around a stakeholder concerned about fire incidents and fluctuations in air
quality within proximity. By means of the UI, the agency can monitor ongoing fire occurrences
(Figure 4). Subsequently, the KB engages in querying and retrieving specific metrics related to
these fire events, encompassing essential measurements.

Figure 4: Mapping of Fire Incident location with corresponding information tab

Through the user interface (UI), the agency gains the capability to effortlessly oversee ongoing
fire incidents (data received from IoT edge devices). Additionally, the UI allows for the
convenient identification of health monitoring devices (i.e., carried by first responders) within
proximity. By accessing the dedicated tab, the agency can access data concerning air quality
measurements for the area of interest (refer to Figure 5) and take any necessary
precautions/actions, for example extracting first responders from an area because of toxic
fumes.

Figure 5: Geographical placement of Health Monitoring devices with associated information

Tabs

Moreover, the UI enables the agency to verify the closest health monitoring device in relation
to a fire incident (Figure 6), which in turn can help them to identify which responder will arrive
first at the area of interest or who is in more imminent danger.

Figure 6: Proximity of Health Monitoring device to Fire Incident location

As demonstrated in this simple example, the fusion of information from various components
–accompanied with the rule designing– can assist agencies make more strategic decisions
during critical situations. It is worth mentioning that the aforementioned scenario focused on
Phase B (Detection and Response), but given the variety of data types available in the project
and the consortium’s expertise (needed for the rule design), the KB can be used throughout
all phases.

Lastly, we would like to clarify that the UI presented above was created to give a possible
visualization of the KBIF output. Still, as the development of the component is in progress and
yet to be integrated in the SILVANUS Dashboard the final product (UI) may vary.

2.2.3. Rules design and implementation
The development of the SILVANUS KBIF has placed a strong emphasis on the rigorous
application of ontology engineering approaches in conjunction with the efficient use of
SPARQL. These sophisticated methods have been integrated into Ontotext's GraphDB
environment, serving as foundational pillars for the system's functionality. Figure 7, displays
a sample SPARQL query, emphasizing the actual implementation of these strategies.

Figure 7: Retrieve the fire incidents and the corresponding health monitoring

For gaining insights portrayed in the maps above, this query is an invaluable tool. These
conclusions are based on the data we previously discussed, which was collected by CTL's IoT
edge device (T4.3) in the context of the Croatian pilot – that is comprehensively elaborated in
deliverable D4.1. Additionally, by integrating data, this SPARQL query demonstrates the
potential of synergy. It expertly combines CTL's insights with UTH's data from their IoT device
within T5.3, focusing on air quality. It is important to note that UTH's data, utilized for fusion
purposes, is not sourced from the Croatian pilot but is instead dummy data specifically
generated for integration. The end result, highlighted by the strategic alignment of SPARQL
queries that harmonize both data sources, is a holistic perspective that enhances decision-
making capacity (Figure 8).

Figure 8: Fire incidents and the corresponding health monitoring

2.3. Component integration
In the realm of application integration, the Storage Abstraction Layer (SAL) can incorporate
our system into its operations. This integration is facilitated by utilizing RabbitMQ6 to consume
data pushed by other components to the SAL. Following this, the system undertakes a
transformation process before populating the semantic KB with the necessary data for the
population procedure, as mentioned in the previous sections.

In terms of deployment, our approach involves the utilization of a Virtual Machine running
Ontotext's GraphDB7. While comprehensive details regarding these aspects will be presented
in the forthcoming D5.4, additional in-depth documentation about the deployment process
can be accessed on the Silvanus GitHub repository: https://github.com/silvanus-prj/semantic-
knowledge-base.

2.4. Plans for future extensions
Anticipating future developments, our project outlines several key directions for progression.
One significant focus involves expanding collaborative partnerships to incorporate additional
metadata into the KB (e.g. CEMA Mobile App from UISAV). These discussions are already
underway, and forthcoming updates will be detailed in D5.4.

Additionally, our roadmap includes the improvement and expansion of our ruleset as well as
the introduction of additional SPARQL queries. The objective of these enhancements is to
bolster the Knowledge Base's (KB) analytical capabilities, providing potential stakeholders
with a richer and more diverse pool of fused data at their disposal.

Under the guidance of ITTI, the next step involves incorporating these cutting-edge insights
directly into the SILVANUS Dashboard. As a visual depiction of the project's development, this
interface will enable stakeholders to interact with the enhanced functionality, improved rules,

6 https://www.rabbitmq.com/

7 https://www.ontotext.com/products/graphdb/

https://github.com/silvanus-prj/semantic-knowledge-base
https://github.com/silvanus-prj/semantic-knowledge-base

and complicated query responses. We expect to unlock greater decision-making capability
and enable a more thorough project experience through these focused efforts.

3. Data fusion using Bayesian models and Monte-Carlo simulations

3.1. Concept of operation

Forest fire is the disaster that very destructive and affects expensive environmental cost. On
the other hand, forest usually has huge area and has remote location. These conditions need
resouces management that will be answered by this Data Fusion application. The objective for
developing this application is supporting for the decisions makers and stakeholders in
allocating the resources. Two main measurements that characterize the location regarding
fire forest management are: Fire Risk Probability and Priority Level Resouces Allocation. Fire
Risk Probability depend on various variables that characterizing the locations, while the
Priority Level Resources Allocation takes into account the area of the forest to order the
urgency level. This application will be helpful for preventive action or to minimize the cost if
the disaster happens.

3.1.1. Data Acquisition and Processing Method

3.1.1.1. Sources and acquisition method
Forest fire risk is influenced by a combination of anthropogenic (human-related) and physical

factors (Kolanek et al., 2021; Ma et al., 2020; Marlon et al., 2008). The interaction of these

factors contributes to the creation of conditions that increase the probability and intensity of

wildfires. Anthropogenic factors considered in this study include distance to settlement,

distance to road, population density, historical fire-spot density, and Gross Domestic Product

(GDP). The physical factors analyzed in this study consist of land use classification as well as

general land/forest structure related data including Normalized Difference Vegetation Index

(NDVI), fuel load, elevation, slope, aspect, annual precipitation, and temperature. A detailed

description of the data acquisition sources is described in Table 1.

Table 1 - Data acquisition source

No Variable Data Sources Processing

1. Distance to Settlement (m) Landsat 8 Buffer analysis with certain distance to settlement

2 Distance to Road (m) OpenStreetMap Buffer analysis with certain distance to road

3 Elevation (m)
ASTER GDEM

imagery

Classification of elevation based on certain interval

4 Fuel load (ton/km2) Landsat 8 imagery Fuel load estimation using vegetation indices

5 Historical fire (events/0.75km2) Local government Recorded data from local disaster management authority

6 Land Usage Landsat 8 imagery Supervised classification from imagery

7 NDVI Landsat 8 imagery Calculation using infrared and near-infrared band

8 Population Density (people/km2)

World Population

Dataset

(www.worldpop.org)

Classification of population density based on certain

interval

9 GDP (21million idr/km2)
World Bank Database

(data.worldbank.org)

Classification of GDP based on certain interval

10 Vegetation Type Landsat 8 imagery Supervised classification from imagery

11 Aspect (º)
ASTER GDEM

imagery

Aspect calculation from elevation data

12 Slope (º)
ASTER GDEM

imagery

Aspect calculation from elevation data

13 Temperature (ºC) ERA5 Reanalysis Average of annual temperature

14 Precipitation (mm/y) ERA5 Reanalysis Total annual rainfall

http://www.worldpop.org/

3.1.1.2. Processing data into map of 14 variables
Figure 9 shows the data source acquisition scheme and processing into GeoJSON format that

was used in the present work. Satellite and Light Detection and Ranging sources are utilized

by Landsat and digital elevation (DEM) data and were completed by field observations data.

The 14 variables utilized in this study were sourced from various open data repositories. To

determine the distance to roads, OpenStreetMap data was employed. The buffer method was

applied to calculate the DR (distance to the road) and distance to settlements (DS) within a

specific area. Buffer analysis investigates the spatial relationship between a central object and

other objects within a designated distance (Zhou et al., 2018).

The primary data source for this study is Landsat 8 imagery, which serves as the foundation
for generating a range of derived data, such as distance to human settlements, Normalized
Difference Vegetation Index (NDVI), fuel load, land usage, and vegetation type. NDVI is the
ratio of the difference between the near-infrared band (NIR) and the red band (R) and the sum
of these two bands (Yengoh et al., 2016) (Eq. 3.1). Fuel load estimation is calculated based on
vegetation indices including EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation
Index) and NDVI (Bao et al., 2022) (Eq. 3.2).

NDVI = (NIR-RED)/(NIR+RED) (3.1)

Where, NIR stands for Near-Infrared Light and RED stands for Visible Red Light.

FUEL LOAD = 50.78EVI + 237.64NDVI + 109.38SAVI – 102.83 (3.2)

Where, EVI stands for Enhanced Vegetation Index, SAVI stands for Soil Adjusted Vegetation

Index and NDVI stands for Normalized Difference Vegetation Index. Settlements, land usage

and vegetation type were classified using maximum likelihood method. Maximum Likelihood

method has been extensively used as the remote sensing classification method (Yonezawa,

2007). This approach assumes that the digital number (DN) values of the image within each

user-defined class adhere to a multivariate normal probability distribution. To calculate the

distance to a settlement, the classification of areas into settlement and non-settlement

categories is performed. This involves calculating the distance from a specific location to the

settlement area. The classification of land usage and vegetation type were described in Table

1 and Table 2.

Table 2 - Classification of land usage

Level Description

1

Paddy field, Dry land, Water area, Unused

land, Urban-rural fringe, Industrial and

mining land, Residential land

2 Meadow, Grassland, Alpine vegetation

3 Broad-leaved forest, Shrub

4 Coniferous forest, Theropencedrymion

Table 3 - Classification of vegetation types

Level Description

1 Desert, Swamp, Cultivated plants

2 Meadow, Grassland, Alpine vegetation

3 Broad-leaved forest, Shrub

4 Coniferous forest, Theropencedrymion

Figure 9: High-level process of data fusion

The 14 variables were processed into spatial data with a consistent format and grid size using

ArcGIS software before conducting Machine Learning analysis. Data processing involved

transforming the variables into GeoTIFF, shapefile, and tabular formats. Additionally, all the

variables were further processed and converted into the shapefile format, maintaining the

same grid size. ArcGIS plays a crucial role in processing and converting various spatial data. It

offers a wide range of tools and functionalities that enable users to manipulate, analyse, and

visualize spatial data effectively. It allows users to import and convert different types of spatial

data, such as shapefiles, raster datasets, GPS data, and tabular data.

The variables that affect wildland or forest fire probabilities have been comprised two groups:

human related factors and physical-environment factors. When the data from GIS is ready,

the next process is the data fusion that converting into decision support system. The data

fusion needs some methodology that propose in the present work. Fuzzy logic was used to

aggregate both human related variables and physical-environment variables. Montecarlo

method was used to calculate the area of characteristics map. Bayes method was uses to

calculate the resources allocation priority to help the stakeholders to make the resources

distributions decision.

3.1.2. Concept and Mathematical Modelling: Fuzzy Logic, Montecarlo and Bayes
Method

3.1.2.1. Fuzzy Logic
In the field of scientific and technical computations, various equations which describe

realistic problems like natural phenomena or engineering problems can lead to solving a

system of linear equations. The exact numerical data might be unrealistic, but uncertain data

could be considered as more aspects of a real-world problem. The fuzzy data is being used as

a natural way to describe uncertain data. Fuzzy logic was proposed by Zadeh (1965), and,

afterward, many papers and books were published in fuzzy system theory.

3.1.2.2. Basic Properties of Fuzzy Sets
Suppose B is a fuzzy set of elements, denoted generically by x, defined on the universe of

discourse X, and represented by a membership function µB(x), then:

(a) Support of a fuzzy set:

The support of a fuzzy set B, S(B), is the crisp set of all elements x ∈ X such that µB(x) > 0, and
is written formally as in Eq. 3.3.

S(B) = { x ∈ X | µB(x) > 0 } (3.3)

(b) Core of a fuzzy set:

The core of a fuzzy set B, C(B), is the crisp set of all elements x ∈ X such that µB(x) = 1, and is
written formally as in Eq. 3.4.

C(B) = { x ∈ X | µB(x) = 1 } (3.4)

(c) Height of a fuzzy set:

The height of a fuzzy set B, H(B), is the largest membership degree corresponding to any
element in the set, and is written formally as in Eq. (3.5).

H(B) = supx∈XµB(x) (3.5)

(d) Normal and subnormal fuzzy set:

A fuzzy set B is called normal when H(B) = 1 and called subnormal when H(B) < 1.

The properties of fuzzy sets (a) to (d) are illustrated graphically in Figure 10.

Figure 10: Support, core and height of a fuzzy set.

(e) α-cut of a fuzzy set:

Given any number α ∈ [0,1], the concept α-cut, denoted by Bα, of the membership function
µB(x) is the crisp set of all elements, x, such that µB(x) is ≥ α, and is written formally as in Eq.
3.6. The α-cut concept, which also called α-level, can be illustrated graphically as shown in
Figure 11.

Bα = { x ∈ X | µB(x) ≥ α } (3.6)

Figure 11: Illustration of a-cut concept

(f) Convex fuzzy set:

A fuzzy set B is called convex if all α-cut sets are convex, which means that joining any points
of the α-cut lies completely within the set. Another definition of a convexity of a fuzzy set can
be expressed as in Eq. 3.7, where µ(x) is a piecewise continuous function. A graphical
illustration of a convex and nonconvex fuzzy set is shown in Figure 12.

µB(x2) ≥ min (µB(x1), µB(x3)), ∀ x1 ≤ x2 ≤ x3 (3.7)

Figure 12: Convex and nonconvex fuzzy set

3.1.2.3. Basic Operations on Fuzzy Sets
Given two fuzzy sets, A and B defined on a universe of discourse X, Zadeh (1965) suggested
that their intersection, union and complement operations can be generalised from the notion
of standard crisp sets operations, intersection, union and complement, and written
mathematically as in equations (3.8), (3.9) and (3.10), respectively. Graphical illustrations of
these operations are shown in Figure 13, Figure 14 and Figure 15, respectively.

µA∩B(x) = µA(x) ∩ µB(x), ∀ x ∈ X (3.8)

µA∪B(x) = µA(x) ∪ µB(x), ∀ x ∈ X (3.9)

µA¯(x) = 1 - µA(x), ∀ x ∈ X (3.10)

Figure 13: Intersection operation of fuzzy sets

Figure 14: Union operation of fuzzy sets

Figure 15: Complement of a fuzzy set

3.1.2.4. Montecarlo Method
Wildland fire management needs information about the characteristics and areas on the map.
The map is always available in complicated geometry and difficult to calculate the area. The
Monte Carlo technique gives an easy but powerful and accurate method to handle that
problem. The area finite area integral may effectively use the Monte Carlo method [Landau
and Binder, 2009][Reiter,2008]. As shown in Figure 16, to calculate the area A, under f(x) with
the left border a and right border b is expressed as:

A = (3.11)

Figure 16: Monte Carlo for integral area

A lot of random N dots were hit at the red square and will equal the number of dots that hit
areas A and B (N = A + B). The proportion area A of the total red squared area is expressed as:

 (3.12)

So, to estimate the area A expressed as:

 (3.13)

where A is the number of dots that hit area A and B is the number of dots that hit area B.

3.1.2.5. Bayesian Method
The sample space Y is the set of all possible datasets, from which a single dataset y will result.
The parameter space Θ is the set of possible parameter values, from which we hope to identify

the value that best represents the true population characteristics. The idealized form of
Bayesian learning begins with a numerical formulation of joint beliefs about y and θ, expressed
in terms of probability distributions over Y and Θ. The posterior distribution is obtained from
the prior distribution and sampling model via Bayes’ rule (Hoff, P.D., 2009):

 (3.14)

Suppose {H1, . . . , HK} is a partition of H, Pr(H) = 1, and E is some specific event. The axioms
of probability imply the following:

Rule of total probability: (3.15)

Rule of marginal probability: (3.16)

Bayes’ rule: (3.17)

3.1.2.1. Case example
The important characteristics of the wildfire variables are the weights of every variable. Here,
we will explain how to calculate the weights for variables. The reference that we use here
were using weights data in China (Weijie, C., et. al., 2021) as shown in the Table 4. The
different location must be having the different characteristics and so the difference weights.

Table 4: Weights used for the area under examination

No. Wildfire-Related Variables Weight

1 DS 0.1265

2 Vegetation Type 0.1227

3 DR 0.1182

4 Annual precipitation 0.1043

5 Fire—spot density 0.0997

6 Land-Usage Type 0.0922

7 Elevation 0.0873

8 NDVI 0.0789

9 Aspect 0.0554

10 Fuel load 0.0376

11 Population density 0.0297

12 Annual temperature 0.0245

13 Slope 0.0134

14 GDP 0.0096

 Total Weight = 1.0000

After every weight was found, then the next calculations are grouping all 14 variables into two

groups: human-related factors (HRF) and physical-environmental factors (PEF).

Figure 17: Scheme for case example of how Fuzzy Logic and Bayesian Method work.

The first parts on the left in Figure 17 are HRF (human-related factors) or

anthropomorphic variables and PEF (physical-environmental factors). Five (GDP, Population

Density, Distance to Settlement, Distance to Road, and Historical Fire) out of 14 variables are

HRF in Table 1. While the rest (9 variables) are PEF. All variables are discretized into 4 levels

as shown in Figure 17. The values of 2.8 for HRF and 1.8 for PEF are the averaged value for

the 4 scale. Those crisp values are fed into Fuzzy Logic due to the advantages of handling the

vague quantities of human factors that must be mixed with physical-environmental factors.

 In Fuzzy logic, the parameters involve fuzzification and defuzzification where crisp

input will be processed also into crisp output via center-of-gravity calculations. The calculated

value 2.32 as shown in Figure 17 is P(F|Ak) or the Probability of Fire level 2.32 in 4 scale if the

area Ak must be fired. Here we need the area of Ak that is calculated using Montecarlo method.

After all area has the value of P(F|Ak), then the priorities of P(Ak|F) are calculated using Bayes

theorem. The meaning of P(Ak|F) is the level priorities if all domain under consideration must

be fired.

3.2. Software implementation and results

3.2.1. Data entry
The complete results for all 14 variables are presented in Figure 34 up to Figure 37. All
measurements were scaled into four levels. The standard of factor discretization is presented
in Table 3 (Chen et al., 2021). Table 5 shows the first, second, third and fourth bracket
represent the value of 1, 2, 3 and four level, respectively. Five of those 14 variables are the
human related factors that influence the fire risk characteristics of the forest or wildland.
Those five are Distance to Settlement, Distance to Road, Population Density, GDP (gross

domestic product) and Historical Fire. The rest of 9 variables are physical environmental
factors that constitute from meteorological factors (Temperature, Aspect, and Precipitation)
and physiographic factors (Elevation, Fuel Load, Land Usage, NDVI, Vegetation Type and
Slope). Detailed data acquisition and methods was described below.

Table 5: Variables influence

No Variable Proportional

1. Distance to Settlement (m)
(0, 356.5), (356.5, 635.7), (635.7, 1041.8), (1041.8,

 ∞)

2 Distance to Road (m)
(0, 832.6), (832.6, 2043.7), (2043.7, 3860.3),

 (3860.3, ∞)

3 Elevation (m) (0, 145), (145, 295), (295, 575), (575, ∞)

4 Fuel load (ton/km2) (0, 1), (1, 1.3), (13, 23.3), (23.3, ∞)

5 Historical fire (events/0.75km2) (1), (2), (3), (≥4)

6 Land Usage refer to Table 1

7 NDVI (0, 0.8), (0.8, 0.86), (0.86, 0.90), (0.90, 1)

8 Population Density (people/km2) (0, 91.9), (91.9, 144.7), (144.7, 303.1), (303.1, ∞)

9 GDP (21million idr/km2) (0, 194), (194, 400), (400, 638), (638, ∞)

10 Vegetation Type refer to Table 2

11 Aspect (º)
North (0◦, 45◦) [(315◦, 360◦), East (4 5◦, 135◦),

 South (135◦, 225◦), West (225◦, 315◦)

12 Slope (º) (0, 3.3), (3.3, 10), (10, 18.3), (18.3, 90]

13 Temperature (ºC) (<19.9), (19.9 – 21.5), (21.5 – 22.8), (>22.8)

14 Precipitation (mm/y) (<1730.7), (1730 – 1950.6), (1950.6 – 2095.6), (>2095)

a. Distance to settlement

Prior to computing the distance to the settlement, it is needed to conduct land cover
classification to identify the settlement area as shown in Figure 18 and Figure 19 . This
classification process utilizes Landsat satellite imagery and Sentinel satellite imagery as data
sources. The chosen method for land cover classification is the maximum livelihood method.
Subsequently, a buffer analysis is performed to determine specific areas located at a given
distance from the settlement area. The buffer distance is determined according to the criteria
outlined in Table 5. The Eucledian buffer method was implemented in this study. This method
measures distances on a two-dimensional Cartesian plane, calculating the distances between
two points on a flat surface. The Euclidean buffer is suitable for analysing distances around
features in a projected coordinate system within a relatively small area, such as one UTM
zone.

Figure 18: Buffer tools in ArcGIS Pro

Figure 19: Distance to settlement

b. Distance to road

The primary data required for this analysis consists of road data sourced from OpenStreetMap
(Figure 20). To ascertain the distance to the road location area, the buffer analysis method is
applied within the ArcGIS software. The buffer distance is tailored based on the criteria
provided in Table 5.

Figure 20: Distance to road

c. Elevation

The essential data for elevation classification is the Digital Elevation Model (DEM). One widely
used global DEM source is ASTER GDEM, which was found to be used extensively in various
studies. Access to ASTER GDEM is available at Earth data website. It's important to note that
ASTER GDEM data has a resolution of 30 meters, making it suitable for large-scale topographic
analysis, though it may not be ideal for high-resolution local studies. Elevation classification
was performed using the ArcGIS software (Figure 21), employing the reclassify tools in
accordance with the criteria outlined in Table 5.

Figure 21: Elevation data

d. Fuel load

Landsat satellite imagery is required to calculate the fuel load. The Landsat imagery data can
be obtained from the USGS website by downloading all available bands (Figure 22). The
calculation of fuel load (Figure 23) can be performed using either ArcGIS or Python. Fuel load
estimation is calculated based on vegetation indices including EVI (Enhanced Vegetation
Index), SAVI (Soil Adjusted Vegetation Index) and NDVI (Bao et al., 2022).

NDVI = (NIR-RED)/(NIR+RED)

Where, NIR stands for Near-Infrared Light and RED stands for Visible Red Light.

FUEL LOAD = 50.78EVI + 237.64NDVI + 109.38SAVI – 102.83

Where, EVI stands for Enhanced Vegetation Index, SAVI stands for Soil Adjusted Vegetation
Index and NDVI stands for Normalized Difference Vegetation Index.

Figure 22: Raster calculator tools

Figure 23: Fuel load

e. Historical fire

To calculate historical fire events within a specific unit area, it is necessary to acquire data on
forest fire events. This data can be obtained from the local government, such as Indonesia's

Regional Disaster Management Agency, for example. The density of fire events was computed
using ArcGIS software. The study area was divided into a grid, with each grid cell measuring
0.75 km2

f. Land Use

Land use identification using multispectral imagery has been extensively studied and applied
in various research and practical applications. In this study, we utilized Landsat to perform
identification and classification of land usage using maximum livelihood method. Land usage
was classified as follows: 1) Paddy field, Dry land, Water area, Unused land, Urban-rural fringe,
Industrial and mining land, Residential land; 2) Meadow, Grassland, Alpine vegetation; 3)
Broad-leaved forest, Shrub; and 4) Coniferous forest, Theropencedrymion. Additionally, each
land usage is assigned a score based on the criteria outlined in Table 5.

g. NDVI

NDVI has been widely used as an indicator of several factors such as canopy density, biomass,
plant health, and vegetation productivity (Ghaffarian et al., 2020; Turubanova etal., 2015;
Verbesselt et al., 2016). Furthermore, NDVI is also effective to assess vegetation damage,
stress, recovery (Rezaei et al., 2021; Smith et al., 2014). NDVI time series monitoring using
remote sensing images can be used to determine vegetation growth and recovery regarding
to this ecological resilience program. NDVI is the ratio of the difference between the near-
infrared band (NIR) and the red band (R) and the sum of these two bands (Rouse et al., 1974;
Yengoh et al., 2015).

 NDVI = (NIR-RED)/(NIR+RED)

Where NIR stands for Near-Infrared Light and RED stands for Visible Red Light. NDVI was
processed using ArcGIS and Python (Figure 24).

Figure 24: NDVI data

h. Population density

Population density data was acquired from the World Population Database with a resolution
of 1 km x 1 km. Moreover, the population density is categorized based on the criteria specified
in Table 3, utilizing the Reclassify tool within ArcGIS.

i. GDP

The GDP data represents economic factors relevant to the inhabitants of the forest fire-prone
region. This data was obtained from the World Bank database, but the resolution is at the
country level. For more detailed economic data, additional information from local
government sources can be incorporated. The GDP data, initially in tabular format, was
transformed into spatial data by integrating it with administrative boundary spatial data. The
resulting converted data is then represented in the form of a shapefile.

j. Vegetation type

Landsat imagery was used as the primary data source for classifying vegetation types in this
study, although other multispectral satellite images could be utilized as well. The vegetation
types are grouped into four categories: 1) Desert, Swamp, Cultivated plants; 2) Meadows,
Grassland, Alpine vegetation; 3) Broad-leaved forest, Shrub; and 4) Coniferous forest,
Theropence drymion. Furthermore, each vegetation type is assigned a score based on the
criteria provided in Table 5.

k. Aspect

The aspect of a slope refers to the direction in which the slope faces. It is typically measured

in degrees from 0° to 360°, with 0° representing north and 180° representing south. The aspect

of a slope plays a significant role in various processes and phenomena, including hydrological

processes, erosion, vegetation distribution, and solar radiation exposure. We utilized ASTER

GDEM data to calculate aspect using Spatial Analyst tools in ArcGIS (Figure 25, Figure 26).

Furthermore, the aspect calculation result data is classified according to Table 5.

Figure 25: Aspect data

Figure 26: Aspect tools in ArcGIS

l. Slope

Slope, in this context, refers to the measurement of elevation change between adjacent cells
in a digital elevation model (DEM). ASTER GDEM data was processed using Calculate Slope in
ArcGIS (Figure 27, Figure 28). The Calculate Slope tool creates a surface that represents slope
by utilizing elevation data.

Figure 27: Slope data

Figure 28: Slope tools in ArcGIS Pro

m. Temperature

Temperature data was obtained from ERA5-reanalysis. The fifth generation of the ECMWF's
reanalysis of the previous eight decades' worth of global climate and weather is known as
ERA5. Data is accessible starting in 1940. For a vast range of atmospheric, oceanic, and land-
surface parameters, ERA5 gives hourly estimates. Due to its relatively coarse spatial
resolution, a single ERA5 data grid can effectively cover the entire pilot project location. The
variable chosen for this study is the 2m temperature, focusing on its annual average value.

n. Precipitation

The precipitation data utilized in this study comprises the annual total precipitation obtained
from ERA5-reanalysis data. Additionally, the total precipitation was categorized based on the
criteria outlined in Table 5.

3.2.2. Initialization and application execution
The 14 variables data consists of various formats. To conduct Machine Learning analysis, the

data needs to be in GeoJSON format. Hence, it is necessary to convert and merge the data

into GeoJSON format by following these steps:

1. Convert all data files to shapefiles format (Figure 29).

Figure 29: Raster to polygon tools

2. Generate a polygon shapefile grid with dimensions of 0.75km x 0.75 km (Figure 30).

Figure 30: Generate shapefile grid

3. Overlay all the shapefiles onto the shapefile grid to create a new shapefile grid (Figure

31).

Figure 31: Overlay all parameters to one shapefile grid

4. Conduct a spatial join for all the new grid shapefiles, combining them into a single

shapefile with complete attribute data (Figure 32).

Figure 32: Spatial join tools

5. Convert the grid shapefile to GeoJSON format (Figure 33).

Figure 33: Example convert shapefile to GeoJSON

According to survey, around 90% of wildland or forest fire has direct or indirect relation with
human factors (Depicker et al., 2020)

According to survey, around 90% of wildland or forest fire has direct or indirect relation with
human factors (Depicker et al., 2020). Distance to Settlement (Table 5; no. 1) and Distance to
Road (Table 5; no. 2) show the main variables related to human factors for fire probability due
to those variables represent the main human activities factors. Figure 34 shows that the
dominant colour is red (3.1 – 4) means the area was dominated remotes area or far from
settlements. Figure 35 shows the colour of the map is dominated in green colour means there
are so many roads that available on the area for human movement.

 Figure 34: Distance to Settlement

 Figure 35: Distance to Road

Population density represents the population assemblage or the number of people in every
unit of area. DA dnse population area logically has high positive correlation with human
activities and high fire probabilities in consequence. Figure 36 shows the Population Density
Map that is represented by the colored scale. GDP represents the economic status of the
region. For this present case as shown in Figure 37, the GPD per capita is nearly similar, so the
level of GDP in area also similar to the area. This means that denser areas will consequently
have a higher level GDP. But this phenomenon may be different for the others area when the
area has non uniform GDP per capita.

 Figure 36: Population Density

 Figure 37: GDP

Historical Fire variables represent the distribution of past fire events on certain area. The data
monitored by National Meteorology, Climatology and Geophysics and also recorded by
Forestry and Environment Ministry. Figure 38 shows the Historical Fire map that has one
center highest event. The Precipitation level in the research area is posed in the Figure 39.
The precipitation figure shows only red color means in the research area has the same level
of precipitation in the highest level.

 Figure 38: Historical Fire

 Figure 39: Precipitation

The same character parameter for the research area is the temperature. Figure 40 shows that
for average annual temperature has same level with the highest score. That means in the area
of research has the same level with the highest score of the average annual precipitations.

 Figure 40: Temperature

 Figure 41: Elevation

The opposite result with temperature is the elevation. Figure 41 shows only one green color
that means in the research area all have lowest scale elevation. Otherwise, same result with
the elevation is the fuel load. Figure 42 shows one level fuel load that is in green color or the
lowest scale. The little bit different character parameter is posed by aspect. Figure 43 shows
the colored map result of aspect with score 2 domination and little scattered level 1 and 3

across area. Similar unit in degree (º) with aspect but with detail situational profile is slope as
shown in Figure 44. The slope or local gradient character of the research area has quite various
level although only in the range of 1 -3 score that means there are no steep contour.

 Figure 42: Fuel load

 Figure 43: Aspect

The next parameter is discussing with what the greenness level i.e. normalized difference
vegetation index (NDVI). The coverage of vegetations in the surface of the land is represented
by the NDVI level. Figure 45 shows the colored map that the area dominates by level 1. The
detailed information that what available on the surface land plots on the next parameters, i.e.
Land Usage and Vegetation Type as shown in Figure 46 and Figure 47, respectively.

 Figure 44: Slope

 Figure 45: NDVI

As shown in Figure 46 and Figure 47, the results in colored map very similar due to the criteria
of both Land Usage and Vegetation type also quite similar

 Figure 46: Land usage

 Figure 47: Vegetation Type

Before analysis, all the parameters are pre-processed and consolidated into a single JSON file.

Once prepared, this file can be uploaded to the system, as illustrated in C, to conduct a priority

resources area analysis.

Figure 48: User interface for parameter initialization and application execution

As shown in Figure 48, the user is required to input the map name, country, and province to

provide supplementary information for the JSON data. This supplementary data is utilized as

support data for creating a data library.

The analysis process initiates by determining the fire probability of the specified area using

fuzzy logic. This system leverages the Flask-Python Framework and executes several

sequential steps, including fuzzification, inference, and defuzzification.

The fuzzification step involves converting crisp (precise) parameters into fuzzy sets. Fuzzy sets

are used to represent linguistic variables, which are terms like "low," "medium," or "high" that

describe the input variables in a fuzzy logic system.

Moving on to the second step, inference, the fuzzy logic system employs a set of rules

expressed in the form of "IF-THEN" statements. These rules establish relationships between

the fuzzified input variables and the output variable. The system combines the fuzzy rules and

the degree of membership of the input variables to determine the degree of membership of

the output variable's fuzzy set.

The last step of fuzzy logic is defuzzification. the fuzzy output obtained from the inference

step needs to be converted back into a crisp value by centroid methods. The Centroid method

is considered the center of mass or the "center of gravity (cog)" of the fuzzy set, and it serves

as the final output of the calculation of fire probability, i.e shown in Figure 49.

Figure 49: Fire Probability

To analyze the allocation priority of resources, we integrate the fire probability and the area-

wide considerations using Bayesian methods. The area-wide calculation involves employing a

ratio approach through Monte-Carlo methods, where random points are distributed across

the entire grid area and counted accordingly, i.e priority resource shown in Figure 50.

Figure 50: Priority Resource

Furthermore, the obtained results offer support for displaying detailed information about

specific areas by simply clicking on the grid, as illustrated in Figure 51. Additionally, the system

is equipped to handle time series data, as depicted in Figure 52. This enables users to explore

and analyze data over a period of time, enhancing the system's capabilities for comprehensive

data visualization and analysis.

Figure 51: Detailed data of a variable

Figure 52: Over time Data

3.3. Component integration

We assume integration involves two main components: deployment and app integration. For
deployment, we utilize Docker Container, providing a user-friendly and efficient approach to
deploying our app. Detailed documentation for this process can be found on the Silvanus

GitHub: https://github.com/silvanus-prj/fire-probability-analytics-back-end.

Regarding app integration, pilots can easily integrate with our system by requesting HTTP
access through our REST API. The API documentation, available on Postman (Allocation
Resource Analysis section). The provided preview is presented below:

1. Get Available Factors:

 This request returns a detailed overview of all the factors. The results encompass Bayes
analysis using both the Area Wide (Montecarlo) technique and Fuzzy Logic, involving a total
of 14 variables.

2. List of Maps

https://github.com/silvanus-prj/fire-probability-analytics-back-end

 This request returns the list of analyzed maps.

3. Map Detail

This request offers comprehensive details about the specific area of the map data.

4. Show Timeseries Graph

This request offers the chronological sequence of variable changes over time.

Further detailed API documentation, available on Postman (Allocation Resource Analysis
section): https://s.id/amikom-silvanus-api, offers comprehensive information and guidelines
for seamless integration.

3.4. Data Fusion Future Plan
An extended data fusion methodology exploiting the above results is depicted in Figure
73Figure 53 and will be describes below.

Figure 53: Extended process for data fusion

3.4.1. Replacement of ArcGIS with our own apps

The plans for future development for the Data Fusion App are in regard with ArcGIS

replacement by our own code with steps, as follows:

a. Users input 14 variables with certain format files.

b. The System reads the input files,

c. Describe the certain area under considerations and must avoid unnecessary area due

to wasteful resources.

d. The system read the availability of the area under consideration (whether available or

not). The decision

https://s.id/amikom-silvanus-api

• False: If user does not prepare the area border, then the system will read the

satellite image with default resolution. If the size of the default resolution is

greater than the threshold (too big), the process will stop.

• True: If the user prepares the area border, the system will clip the satellite image.

e. The process will continue only if the size of the image satellite resolution is under the

threshold. Otherwise, the process of another step (downsizing) will be mandatory.

f. The system will extract the image into certain parameter values or variables.

g. The extracted parameter values will be joined into Grid (50x50).

h. The results will have three functions:

• The system will export into GeoJSON format that contains the spatial joints values.

• The system will store DB in certain locations.

• The system will respond to the JSON to the users as API Response.

3.4.2. Weights Calculation for 14 variables in different area

The idea for calculating all 14 variables is that they have a correlation to the dependent

variable (burned/unburned). The measurement of the strength of linear correlation between

dependent and independent variables is used Pearson’s correlation (r). The value of the

Pearson’s correlation is –1 < r < 1, where a positive correlation means that the variables move

in the same direction. Put another word, it means that as one variable increase so does the

other, and conversely, when one variable decrease so does the other. A negative correlation

means that the variables move in opposite directions.

4. Resource allocation of response teams

4.1. Concept of operation
The main objective of this component is to assist commanders take optimal decisions
regarding the resource allocation of response teams in the field depending on the evolution
of a wildfire incident and the status of the available response teams. For instance, it may
suggest to assign additional teams to a specific area that is at high-risk (where “risk” will be
defined below). The main goal is to perform an optimization process for the coverage of the
area under consideration and the use of the available resources upon the data collected by
the monitoring components. Hence, the proposed platform is aligned with the real needs
maximizing the adopted mitigation actions.

The high-level diagram is depicted on Figure 54 and presents the general flow-chart of this
Decision Support System task. The main inputs of the process are the fire spread projection,
the population distribution, and the initial unit distribution, as well as additional parameters
that may contribute to the impact of a specific area that may be affected by the approaching
fire front (e.g. valuable infrastructure) and the properties of different types of fire-fighting
units (e.g. capacity, cost of operation etc.). The output is a newly proposed unit distribution
taking into account these inputs. Obviously, there are many parameters that need to be taken
into account in this process raising the need to address the trade-offs when trying to optimize
the unit resource allocation leading to a multi-objective optimization problem. Thus, the
resource optimization process is a mathematical model developed for management of
wildfires with the objective, first to minimize the number of people that may be exposed to
risk (and above all life loss) in the high-risk areas and second, to minimize the total cost of fire
containment and property losses. The model optimizes the resource allocation decisions given
limited capacity and availability while considering the fire spread model and the population
distribution.

Figure 54 - Resource Allocation Diagram

4.1.1. Data Structures
The aforementioned inputs and outputs of the resource allocation model are obviously
geospatial data. The two primary types of geospatial data are raster and vector data. Raster
data is stored as a grid of values which are rendered on a map as pixels. Each pixel value
represents an area on the Earth’s surface. The value of a pixel can be continuous or
categorical. Vector data structures represent specific features on the Earth’s surface and
assign attributes to those features.

In our case, we use raster data as depicted on Figure 55, because it includes the spatial
information that connects the data to a particular location like the raster’s extent and cell size,
the number of rows and columns, and its coordinate reference system (or CRS).

Figure 55 - Resource Allocation Input Raster

4.2. Software implementation and results

4.2.1. Population based geographical distribution of impact risk estimation
Following the above approach, and assuming that specific details about the land properties or
the fire unit location and capabilities are not available (either not available in a usable format
or not considered reliable to include in the DSS) a simple direct approach is to relate the
information of the fire spread with the population density in a specific area in order to derive
a first level information that can be georeferenced and visualized improving the situational
awareness of decision makers. By combining these two types of input data, we can define
what we call criticality index which represents an expected impact severity as a function of
the fire intensity estimated to reach a specific area and the population density of the
potentially affected area.

Specifically, for the extraction of a sample fire spread input, we used in a Proof of Concept
(PoC) implementation based on FlamMap 6.2 which is a fire analysis desktop application that
simulates potential fire behavior characteristics (spread rate, flame length, fire-arrival, etc.),
fire growth and spread and conditional burn probabilities under constant environmental
conditions (weather and fuel moisture). For the population density input, we are using the
open spatial demographic data of WorldPop8, which provides different types of gridded
population count datasets (Tatem, A, 2017).

The validation of our PoC implementation was done for an area of the Rocky Mountain in
Boulder, Colorado in the US as shown in Figure 56. The area under examination extended in a
rectangle of 13,500m by 14,760m and a grid of pixels-cells with a size of 90m was assumed.

8 https://www.worldpop.org/

Figure 56 - PoC validation scenario

A fire ignition incident with an initial fire front as shown in Figure 57 was simulated on
FlamMap and its extension over time was extrapolated against the inhabited surrounding
areas in order to generate the criticality index per pixel-cell.

Figure 57 - PoC Example Inputs

In Figure 57, the fire arrival in minutes (left diagram) and the estimated total number of people
(right diagram) are depicted per pixel – cell.

Regarding the criticality index calculation algorithm, initially, for every grid cell that according
to FlamMap the fire will arrive in the next 36h, we calculate a population criticality index
within a radius of approximately 500 meters. Then, by calculating a weighted average of the
fire arrival criticality and the population criticality, a final criticality index between 1 - 6 is
created for each pixel. When an update of the fire spread model is received, the algorithm will
recalculate the critical areas. The algorithm and the criticality thresholds should be adjusted
to the granularity (forecast time scales, geographical grid) and data types expected as input
from the fire spread model, as well as to the time interval between fire spread model updates.

In our previous example from Figure 57, the fire arrival criticality Index is:

• Low: > 24h

• Medium: 12h - 24h

Height: 13,500m

Width: 14,760m

Pixel Size: 90m

Boulder Colorado

H

W

• High: < 12h

while the population criticality index is:

• Low: Uninhabited

• Medium: 0 - 10

• High: > 10

According to these thresholds, the algorithm calculates the final critical areas as depicted in
Figure 58. From the below outputs we can conclude that as it was obvious, areas with higher
population density and where the fire will arrive quickly in the next minutes are more critical
than the others.

Figure 58 - PoC Example Output (per cell criticality index)

4.2.2. Multi-objective optimization based Resource Allocation (MORA)
The population based geographical distribution of impact risk estimation described above as
already mentioned only provides high -level information to increase situational awareness of
commanders and cannot lead to specific recommendations for actual Resource Allocation.
However, as explained in section 4.1, when more data can be provided regarding the fire-
fighting capacity and geographical distribution of fire units as well as additional land
properties that should be taken into consideration for impact minimization (e.g. critical
infrastructure), then more elaborate recommendations can be generated to solve a more
complex optimization problem to improve the effectiveness of resource allocation and reduce
the overall expected impact taking all the above inputs into consideration. We call this
approach Multi-objective optimization based Resource Allocation (MORA) and the operation
and implementation of this methodology will be described in the following subsections.

4.2.2.1. Model Assumptions and Data Sources
We approach the spatial resource allocation problem as a constrained-optimization problem
(COP). In mathematical optimization, constraint optimization is the process of optimizing an
objective function with respect to some variables in the presence of constraints on those
variables. In this case, there are three objective functions that need to be taken into account
in the formulation of the overall cost minimization function:

• The total population in risk.

• The total land - property losses.

• The total cost of resource units

Obviously, the first objective function is of higher importance than the second and third
objective function, which is considered in the algorithm.

Fire suppression is a process where different types of resource units become available at
different time periods. Once a fire starts, it is assumed that it will reach a specific cell according
to fire spread model (fire arrival parameter). So, each cell has a fire arrival value when the fire
is estimated to start burning this cell and becomes high-risk according to the fire spread
model. In this stage, a detailed fire suppression plan is made for this time period. Decisions in
this stage include identifying high-risk areas for allocating resources by their availability.
Resource availability means some of the resources cannot join fire suppression until a specific
period. For instance, non-local resources or aerial firefighting becomes available after some
time.

The model assumes that all the resource allocation decisions are based on the assessment of
the fire condition so that more resources are allocated to fires that are substantial. The fire
condition affects whether an area is determined as high-risk, completely burned, or treated
(under the protection of units that have been dispatched to the area). By keeping track of fire
conditions in each area (as provided by the fire front projection derived by the fire spread
model), resource allocation and evaluation of property losses are determined.

In this model, geographical areas are segmented in cells to demonstrate the fire spread
process. Cell sizes are associated with the fire spread rate and length of each period. In other
words, the cell size in a fast-spreading fire scenario is larger than the cell size in a slow-
spreading fire scenario. For different cell sizes in different fire spread scenarios, cell
population density and cell land value are generated using publicly available data sets. In our
case, the datasets of WorldPop research group are used for the geospatial data on population
distributions.

At the beginning of a fire, according to the fire spread model, the initial conditions of cells,
including the fire-starting point are updated. These initial cell conditions are determined as:

• High-risk: The cell is about to be affected by the fire or has been partially on fire.

• Burnt: The cell has been fully burnt and cannot be treated.

• Treated: The cell is treated by response teams.

There are three prerequisites for a cell to become a new high-risk cell:

1. It should have at least one burnt cell neighbor.

2. It should not have been a burnt cell before.

3. It should have never been treated before.

 In the following periods, suppression efforts based on resource allocation decisions
will affect these conditions and result in an update. These updates are made to minimize the
total population densities in high-risk cells and the total cost of resources and land values
losses.

4.2.2.2. Model formulation

The model includes the following sets, parameters, decision variables, objective functions, and
constraints:

Sets

𝐴 Set of cells in consideration, indexed by 𝑎.

𝐼 Set of resource types, indexed by 𝑖.

𝑇 Set of discrete time periods, indexed by 𝑡.

Parameters

𝐵 Budget for resource units (optional)

𝑅𝑆 Minimum required suppression rate for each cell (𝑐ℎ𝑎𝑖𝑛𝑠 ℎ𝑜𝑢𝑟⁄)

𝐷𝐸𝑁𝑎 Population Density at cell 𝑎.

𝑉𝐴𝐿𝑎 Property and land value at cell 𝑎.

𝑆𝑈𝑃𝑖 Suppression rate of resource 𝑖.

𝐶𝑆𝑇𝑖 Unit cost of resource 𝑖.

𝐶𝐴𝑃𝑖𝑡 Capacity (availability) of resource 𝑖 in period 𝑡.

𝐴𝑅𝑉𝑎𝑡 Binary parameter defining whether cell 𝑎 will be high-risk in period 𝑡.

Decision Variables

𝑥𝑖𝑎𝑡 Number of resources 𝑖 sent to cell 𝑎 in period 𝑡.

µ𝑎𝑡 Binary variable defining whether cell 𝑎 becomes high-risk in period 𝑡.

𝑘𝑎𝑡 Binary variable defining whether cell 𝑎 becomes fully burnt in period 𝑡.

ɸ𝑎𝑡 Binary variable defining whether cell 𝑎 starts to be treated in period 𝑡.

Objective Functions

𝑀𝑖𝑛𝑂𝑏𝑗1 = ∑(𝐷𝐸𝑁𝑎 ∙∑µ𝑎𝑡
𝑡∈𝑇

)

𝑎∈𝐴

𝑀𝑖𝑛𝑂𝑏𝑗2 = ∑𝑉𝐴𝐿𝑎 ∙∑𝑘𝑎𝑡
𝑡∈𝑇𝑎∈𝐴

𝑀𝑖𝑛𝑂𝑏𝑗3 =∑∑∑𝑥𝑖𝑎𝑡 ∙ 𝐶𝑆𝑇𝑖
𝑡∈𝑇𝑎∈𝐴𝑖∈𝐼

𝑂𝑏𝑗1: Total number of people in fire risk.

𝑂𝑏𝑗2: Total land - property losses.

𝑂𝑏𝑗3: Total cost of resource units.

Constraints

1) Total budget for resources must not be exceeded.

∑∑∑𝑥𝑖𝑎𝑡 ∙ 𝐶𝑆𝑇𝑖
𝑡∈𝑇𝑎∈𝐴𝑖∈𝐼

≤ 𝐵

2) For each period and for each resource type the total number of resources must not exceed
the capacity (availability).

∑𝑥𝑖𝑎𝑡
𝑎∈𝐴

≤ 𝐶𝐴𝑃𝑖𝑡∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇

3) All resources sent to each cell are sufficient to contain the fire in this cell.

∑𝑥𝑖𝑎𝑡 ∙ 𝑆𝑈𝑃𝑖
𝑖∈𝐼

≥ ɸ𝑎𝑡 ∙ 𝑅𝑆∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

4) Only high-risk cells will be treated.

ɸ𝑎𝑡 ≤ µ𝑎𝑡∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

5) If a cell is a high-risk in t-1 and is not treated in t-1, then it will become a fully burnt cell in
t.

𝑘𝑎𝑡 ≤ µ𝑎,𝑡−1 − ɸ𝑎,𝑡−1∀𝑎 ∈ 𝐴, ∀𝑡 ∈ (1, 𝑇)

6) Each cell can become a high-risk cell, a burnt cell, a treated cell at most once.

∑µ𝑎𝑡
𝑡∈𝑇

≤ 1,∑𝑘𝑎𝑡
𝑡∈𝑇

≤ 1,∑ɸ𝑎𝑡

𝑡∈𝑇

≤ 1∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

7) Each burnt cell or treated cell needs to be a high-risk previously.

∑𝑘𝑎𝑡
𝑡∈𝑇

≤∑µ𝑎𝑡
𝑡∈𝑇

,∑ɸ𝑎𝑡

𝑡∈𝑇

≤∑µ𝑎𝑡
𝑡∈𝑇

∀𝑎 ∈ 𝐴

8) If a cell has fully burnt, it would never be treated in the future and the opposite.

∑𝑘𝑎𝑡
𝑡∈𝑇

+∑ɸ𝑎𝑡

𝑡∈𝑇

≤ 1∀𝑎 ∈ 𝐴

9) Each high-risk cell must become a treated cell or a burnt cell in the end.

∑∑ɸ𝑎𝑡

𝑡∈𝑇𝑎∈𝐴

+∑∑𝑘𝑎𝑡
𝑡∈𝑇𝑎∈𝐴

≤ ∑∑µ𝑎𝑡
𝑡∈𝑇𝑎∈𝐴

10) A cell to become high-risk must have at least one fully burnt cell neighbor.

10 ∙ µ𝑎𝑡 ≥ 𝐴𝑅𝑉𝑎𝑡 ∙ ∑ 𝑘𝑎′𝑡
𝑎′∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑎)

∀𝑎 ∈ 𝐴, ∀𝑡 ∈ (1, 𝑇)

10 ∙ (1 − µ𝑎𝑡) ≥ 1 − (𝐴𝑅𝑉𝑎𝑡 ∙ ∑ 𝑘𝑎′𝑡
𝑎′∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑎)

)∀𝑎 ∈ 𝐴, ∀𝑡 ∈ (1, 𝑇)

11) Nonnegativity of number of resources.

𝑥𝑖𝑎𝑡 ≥ 0∀𝑖 ∈ 𝐼, ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

12) Binary variables limitations.

µ𝑎𝑡, 𝑘𝑎𝑡, ɸ𝑎𝑡 ∈ {0,1}∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

4.2.2.3. Model validation and demonstration
The validation of the MORA implementation was done as in the case presented in section
4.2.1 again for an area of the Rocky Mountain in Boulder, Colorado in the US as shown in
Figure 59. The area under examination in this case extended in a rectangle of 1,710m by
1,350m and a grid of pixels-cells with a size of 90m was assumed.

(a)

(b) (c)

 Figure 59 – MORA validation scenario (a) area under examination (b) fire spread model
(c) population distribution

A simple scenario for an area of 5x5 cells is used to demonstrate the model results over three
time periods. Each period has a length of one hour. In this experiment, the fire spread rate is
assumed to be stable per hour. We assume that the fire spread rate does not change over
time, so that cell size stays the same in each period. Thus, fire arrivals and population densities
are fixed in each cell. Cell indexes, fire arrivals from the fire spread model and population
densities are shown in Figure 60. According to fire arrivals, the fire starts at cells with index
6,7,11 and 12.

0 1 2 3 4 1 2 0 0 0 2 3

5 6 7 8 9 0 0 1 2 0 0 0 4 5

10 11 12 13 14 0 0 1 2 0 0 2 3 6

15 16 17 18 19 1 1 1 2 0 2 3 4 7

20 21 22 23 24 2 2 2 2 0 2 4 7 7

 (a) (b) (c)

Figure 60 – Cell parameters for the area under evaluation: (a) cell indexes (b) fire arrival time per
cell (in multiples of the basic period) (c) population densities

In this simple example, we assume that there are three different resource types of response
teams (A, B, C) with different parameters as shown in Figure 61. The minimum suppression
rate to contain the fire in each cell is 10, while the total budget is 100.

Resource Type Suppression Rate Cost Capacity

A 2 5
t=0 : 4

t=1 : 4

t=2 : 4

B 5 15
t=0 : 3

t=1 : 2

t=2 : 4

C 10 20
t=0 : 0

t=1 : 0

t=2 : 1

Figure 61 - Resource Types Example

The MORA algorithm will try to allocate the available response teams in the field for each
period in order to minimize the total population in high-risk cells and the total cost of
resources and land-property value losses. To simplify the process in this test example, it was
assumed that the land value is the same and equal to one throughout the whole area. This

means that the land value losses are equal to burnt areas. The optimal solution is expected to
lead to the minimum number of burnt areas (cells).

The optimal solution for this simple constrained optimization problem is depicted in the Figure
62 below. High-risk cells are shown with red color, treated cells with grey color and burnt cells
with black color. In t=0, MORA recommends to allocate to cell with index 7 two units from
type B and to cell with index 12 three units from type A and one unit from type B. There are
no available resources to contain the fire in the other two high-risk cells (index 6 and 11) in
this scenario (an inevitable case in most realistic scenarios). So, in t=1 these cells are going to
be fully burnt and the fire continues to the neighbor cells. According to the availability of
resources, two units from type B are proposed to be allocated to cell with index 17. So, in t=2
cell with index 16 will be fully burnt and cells with indexes 21 and 22 will become high-risk.
Now, there are available resources to be allocated to these high-risk cells to contain the fire.
Specifically, two units from type B in cell 21 and one unit from type C in cell 22 suffice to
suppress the fire in these cells. One unit from type C is preferred than two units from type B
because it costs less.

 2B

 t=0
3A

1B

 t=1

 2B

 t=2

 2B 1C

Figure 62 - Resource Allocation Optimal Solution

In conclusion, the MORA recommends the allocation of available resources of response teams
in specific cells to minimize the total population in risk and the total burnt areas. It directs the
fire only to the bottom cells and not to the right cells where the population distribution is
denser. The result of this simple simulation is depicted in Figure 63, where the left table shows
the fire spread according to fire arrival (t=0 red, t=1 orange, t=2 yellow) and the right table
shows the area after the treatment of the response teams (burnt areas with black and treated
areas with grey).

Figure 63 – Input and Output of Resource Allocation DSS

4.3. Component integration
In the context of application integration, the Storage Abstraction Layer (SAL) incorporates our
system into its operations. This integration is facilitated by utilizing SAL’s message broker to
consume data pushed by other components. The data our application pulls from the SAL is
the fire spread model and specifically the fire arrival time raster. Following this, the resource
allocation algorithm makes a transformation preprocess and fetches the appropriate open
spatial demographic data of WorldPop, as mentioned in section 4.2.1. The results of the
algorithm can be easily stored in the SAL too. To ensure ease of deployment, portability,
scalability, the resource allocation algorithm is deployed as a Docker container. The
containerized integration promises the consistency that the algorithm will run similarly on any
system or environment. The resource allocation component will also be deployed in the
Silvanus Kubernetes cloud platform for testing and validation. Additional in-depth
documentation about the integration process will be also available on the Silvanus GitHub
repository: https://github.com/silvanus-prj/resource-allocation.

4.4. Plans for future extensions

One of the most important future extensions that needs to be implemented is the calculation
of the availability of resources based on their current location. By now, the availability of
resources of response teams is assumed to be static and known beforehand; thus, it is not
calculated by the MORA algorithm.

Furthermore, the multi-objective optimization algorithm can be extended to incorporate
more parameters in its cost function. For instance, land-property value can be retrieved
through publicly available datasets and GIS data repositories. For the initial model
implementation, it is assumed static and equal to one to avoid biasing the areas.

Finally, an extension that can be implemented in the future is to add some constraints of
resource types of response teams in specific locations. For example, in a canyon, the ground

firefighting resources cannot reach the fire, or the aerial firefighting resources cannot drop
water too close to houses.

The above extensions are going to be assessed and the selected extensions will be
implemented in the final version of the resource allocation of response teams’ MORA
algorithm.

5. Stakeholder notification decision on fire incidents using multilingual

textual framework

Multilingual social media sensing plays a vital role in detecting forest fires, as it allows for a
comprehensive understanding of online discussions and their potential risks. With the
inclusion of languages such as Indonesian, English, Italian, Spanish, and Slovak, social media
platforms can monitor and analyse content in real-time, spanning a wide range of global
communities. By employing natural language processing and Machine Learning techniques,
algorithms can identify keywords, sentiments, and geographical references related to fire
hazards. This multilingual approach enables efficient and timely identification of dangerous
situations, allowing authorities and relevant organizations to respond swiftly and mitigate the
risk of forest fires. Through multilingual social media sensing, the world can proactively
prevent and combat this destructive environmental threat.

These systems can extract geolocation information, keywords, and context from social media
posts, allowing stakeholders to quickly pinpoint the exact location of the fire. When the
system detects the number of posts related to fire in a specific location (threshold number
being configurable during system initialization), a notification will be sent to the stakeholder.

Stream data from social media is classified into fire or not fire in the first phase. If the data is
fire, then, the system continue to detect the location based on the neural language processing
approach. The system supports multi language for fire and location detection. The labelled
social data for each language should be trained to make robust models for classification and
named entity (location detection model).

Information on forest fire locations based on social media data needs to be conveyed quickly
to stakeholders. When the text data sent by netizens exceeds the set threshold, a notification
needs to be sent. Notifications must be sent to people who really need the information. Too
many notifications that are not of interest to the user will make the person not care and not
be sensitive to what the system informs them about. Therefore, it is necessary to decide who
should receive the notification.

5.1. Concept of operation
This framework employed Twitter data to train the model in several languages. The pipeline
of the framework started from collected data related to forest fires in Indonesian (Id), English
(En), Italian (It), Spanish (Es), and Slovak (Sk). We annotated relevant datasets with three
labels: language types, fire or not, and location and time entities. Social media sensing
framework is shown in Figure 64.

Figure 64: Framework of Social media sensing

5.2. Software implementation and results

5.2.1. Datasets
In the context of social sensing, datasets enable the detection of emerging issues, sentiment
analysis, and the identification of patterns and trends. Additionally, these datasets facilitate
the development and validation of predictive models, aiding in early warning systems for
potential disasters like forest fires. As social media continues to be a prominent source of real-
time information, the utilization of datasets for media social sensing becomes an
indispensable tool for understanding the world and making informed decisions.

We used several datasets for language detection, fire detection and location extraction in 5
languages. Table 6 describes the source of dataset we used for each language detection
model.

Table 6: Datasets for language detection models

Models Languages Source

Language Detection Indonesian Collecting data from Twitter

 English Provided by partner (CERTH)

 Italian Provided by partner (CERTH)

 Spanish Provided by partner (CERTH)

 Slovak Provided by partner (UISAV)

Fire detection Indonesian Collecting data from Twitter

 Italian Provided by partner (CERTH)

 Spanish Provided by partner (CERTH)

Location extraction Indonesian Web scraping from forest-fire
articles

1. Indonesian Dataset

We have two datasets for different aims. First, a dataset for classification (Twitter collection)
and a dataset for location extraction (article scraping).

We have collected data from Twitter using the Tweepy library, starting from June 22, 2022, to
July 28, 2022. From this work, we got 1048 rows of data related to forest fires in Indonesia.
We used several keywords, such as kabutasap, kabakaranhutan, karhutla, sesaknafas,
daruratasap. The dataset is available online in this following url,
https://github.com/ariflaksito/forest-fire-dataset/

Then we did the pre-processing phase to make the data compatible for the following phase.
We used Python libraries to perform the following pre-processing tasks:

a) Regular expression: remove unused character, lower-case, remove hashtag, username and
retweet text.

b) Sastrawi: remove unused word in Indonesian languages and stemming word.

The snippet code below shows the used of Sastrawi and Regular expression for cleaning the
data.

Manual labelling was conducted by three participants to classify the text into six classes.
According to the labelled process, there are 136 data labelled for forest fire, 458 data for
prevention, 54 data for rehabilitation, 127 data for mitigation, 164 data for countermeasures,
and 90 remainders of the data are labelled as unknown.

Figure 65 and Figure 66 show the number of data items for each class and the distribution of
terms in the dataset. The dataset has 13,167 words in total. Each tweet has an average of
12.57 words, with a maximum word length of 36.

Figure 65: Data distribution each class

https://github.com/ariflaksito/forest-fire-dataset/

Figure 66: Word length distribution

Due to the requirement of building fire prediction for each language we are using 2 classes

(fire and not-fire), so we re-train the model using 2 classes by modifying the class label in

Indonesian dataset.

We modified 6 classes into 2 classes by merging labels that is not forest-fire (prevention,

countermeasure, mitigation, unknow, rehabilitation) in label 0 (not-fire) and forest-fire label

in label 1(fire). As result, the number of data returned for the fire class is 136 and for not-fire

is 911.

b. Indonesian NER Dataset

The second dataset aims to extract location in the Indonesian language. We collected 96

articles in Indonesia news and labelled using BioTagging.

BioTagging, short for "Beginning-Inside-Outside Tagging," is a critical concept in the field of

Named Entity Recognition (NER), a subtask of Natural Language Processing (NLP). NER

involves identifying and classifying named entities, such as names of persons, organisations,

locations, dates, and more, within a text. BioTagging is a labelling scheme used to annotate

tokens (words or characters) in a text corpus to indicate their positions and roles within named

entities.

We obtained 1,103 sentences and 19,844 words from the Indonesian articles. We labelled the

term in the first phase using five different types: place, time, organisation, quantity, and

person. Location appears in 1075 words (B-geo and I-geo), time in 611 words (B-tim, I-tim),

organisation in 790 words (B-org, I-org), quantity in 670 words (B-qty, I-qty), and person in

387 words (B-per, I-per). Table 7 describes the number of BioTagging word in the dataset.

Table 7: The number of word in the BioTagging label

Entity BioTagging Number of words

Location B-geo 703

 I-geo 372

Time B-tim 341

 I-tim 270

Organisation B-org 303

 I-org 487

Quantity B-qty 286

 I-qty 384

Person B-per 237

 I-per 150

2. English Dataset

The English dataset was provided by CERTH in a .csv file format. The data specifically is used
for named-entity recognition. The number of sentences is 366 with a total of 5597 words. In
this dataset, the entity label is separated into place, organisation, person and other. Location
appears in 414 words, organisation in 34 words, person in 44 words, and others in 122 words
(Figure 67).

Figure 67: NER English dataset preview

3. Italian Dataset

The Italian dataset was provided by CERTH in a .csv file format. The data is available for forest-
fire prediction in Italian. We did the pre-processing phase to make the data compatible for
the following phase. We used Python libraries for pre-processing, as follows:

a) Regular expression: remove unused character, lower-case, remove hashtag, username and

retweet text.

b) Natural Language Toolkit (NLTK): remove unused word in Italian languages and stemming

word.

The snippet code below shows the use of NLTK and Regular expression for cleaning the data.

Labels are already available on datasets from third parties where the dataset is divided into
two groups. In this dataset there are 1000 data labelled False and 526 data labelled True.

Figure 68 and Figure 69 show the number of data items for each class and the distribution of
terms in the dataset. The dataset has a total of 22,019 words. Each tweet has an average of
15.44 words, with a maximum word length of 41.

Figure 68: Data distribution each class

Figure 69: Word length distribution

4. Spanish Dataset

The Spanish dataset provided by CERTH in file csv. We did the pre-processing phase to make

the data compatible for the following phase. We used Python libraries for pre-processing.

a) Regular expression: remove unused character, lower-case, remove hashtag, username and

retweet text.

b) NLTK: remove unused word in Spanish languages and stemming word.

The snippet code below shows the used of NLTK and Regular expression for cleaning the data.

Labels are already available on datasets from third parties where the dataset is divided into
two groups. In this dataset there are 1618 data labelled False and 983 data labelled True.

Figure 70 and Figure 71 show the number of data items for each class and the distribution of
terms in the dataset. The dataset has a total of 51,833 words. Each tweet has an average of
20.18 words, with a maximum word length of 55.

Figure 70: Data distribution each class

Figure 71: Word length distribution

5.2.2. Training Model
We employed Machine Learning and deep learning for training stages. In the experiments, we
used a consumer PC equipped with an Intel i5 (Gen 12) CPU, 16 GB of RAM and RTX2060 GPU.

1. Language Detection

From the five datasets in sub-section 5.2.1, we merged them into a dataset and labelled them
based on the language. Figure 72 shows the language distribution of each dataset. The amount
of Spanish data is 2568, Italian is 1426, Indonesian is 1047, Slovak is 573 and English is 366.
The class seems imbalanced, so we should make it balanced.

Figure 72: Language datasets distribution

The next process is splitting the dataset to two categorises (training data, test data). We used
the ratio of 80% training data while 20% of test data. Table 8 depicts the size of the training
and test data sets for each class.

Table 8: Size of training and test datasets for each language

Languages Train data Test data

Spanish 2054 514

Italian 1141 285

Indonesian 838 209

Slovak 458 115

English 293 73

To deal with the imbalance of the above data, we used the Random Over Sampling technique
(ROS) where samples from the minority class are duplicated to balance class distribution. It
artificially increases the number of minority class samples, reducing class imbalance.
However, this method may lead to overfitting and introduce bias, as it duplicates existing
samples without considering the underlying data distribution. After the data balancing
technique, the amount of data for each class becomes 2054.

We used Machine Learning algorithms to train the language classification data. Then, we
evaluated the classifier models using cross validation using 5 folds. There were 3 Machine
Learning algorithms used in this experiment, namely, Naïve bayes, Decision Tree and K-
Nearest neighbour.

a. Naïve Bayes

The Naïve Bayes method is a supervised learning technique that depends on conditional
probability to apply Bayes' theorem. This algorithm is well-suited for sentiment analysis and
text categorization, particularly on social media platforms such as Twitter. The following
equation depicts the computation of category probability in the Nave Bayes algorithm:

(5.1)

)

b. Decision Tree

Decision tree is a tree-structured classifier, where internal nodes represent the features of a
dataset, branches represent the decision rules and each leaf node represents the outcome. In
a Decision tree, there are two nodes, which are the Decision Node and Leaf Node. Decision
nodes are used to make any decision and have multiple branches, whereas Leaf nodes are the
output of those decisions and do not contain any further branches. In a decision tree, for
predicting the class of the given dataset, the algorithm starts from the root node of the tree.
This algorithm compares the values of the root attribute with the record (real dataset)
attribute and, based on the comparison, follows the branch and jumps to the next node. For
the next node, the algorithm again compares the attribute value with the other sub-nodes
and move further. It continues the process until it reaches the leaf node of the tree.

c. K-Nearest neighbor

K-Nearest neighbour algorithm, a Machine Learning algorithm utilized for regression and
classification tasks. It is a straightforward method that stores all existing cases and classifies

new ones by relying on its k neighbours’ majority vote. The case is assigned to the class most
prevalent among its k nearest neighbours, which is determined through a distance function .
One of the distance functions in the KNN algorithm is the Euclidean distance, as formulated in
Equation below:

(5.2)

For metrics evaluation, we used the classification report to measure those Machine Learning

models. This report offers a comprehensive overview of the performance and effectiveness

of language classification models. By assessing metrics such as precision, recall, F1-score, and

support for each language class, the classification report helps gauge the accuracy of the

model's predictions across different languages. Precision represents the ratio of correctly

classified instances within a specific language, while recall measures the proportion of

correctly identified instances relative to the actual instances of that language. The F1-score

combines both precision and recall, providing a balanced assessment of the model's overall

performance. Additionally, the support metric indicates the number of instances present for

each language, aiding in identifying potential biases in the dataset. With insights garnered

from the classification report, researchers and practitioners can fine-tune their models,

address language-specific challenges, and enhance the accuracy of multi-language detection

systems powered by Machine Learning algorithms.

Using the three algorithms presented above, Naïve Bayes achieved the best performance for

multi-language classification in precision, recall, F1-score and accuracy. The comparison can

be seen in Table 9.

Table 9: Comparison performance of models

Model Accuracy Precision Recall F1-Score

Naïve Bayes 0.99 0.98 0.98 0.98

Decision Tree 0.96 0.94 0.95 0.95

KNN 0.92 0.90 0.91 0.89

From the results above, we built the Naïve bayes model using pickle version 4.0 and save this
model to the .sav file.

2. Fire Detection

Based on the availability of the dataset, we build 3 models for fire detection in Indonesian,

Spanish and Italian.

a. Indonesia fire detection model

We used the Indonesian dataset with 6 classes for fire detection. We also designed a
sequential neural network called GRU and LSTM to assess text classification, which was
enhanced from an earlier Recurrent Neural Network (RNN). Furthermore, a bidirectional
technique was used to compare the performance of both models. Moreover, we examined
how the augmented dataset affects the performance of the deep-learning text classifier.

The Indonesian dataset class distribution is not balanced. A challenge with proportionate class
sizes in a dataset differing substantially from one another is called imbalanced data

classification. A simple and well-liked set of methods for balancing the class distributions of
the training data is sampling methods. By using one of the methods, between oversampling
and under sampling, the original data space is balanced. The most common method,
oversampling, uses a method called Synthetic Minority Oversampling Technique (SMOTE) to
introduce false samples into the data space. In 2002, this technique was first introduced.
Random oversampling (ROS) is another technique for handling unbalanced data. The training
dataset is oversampled at random by adding duplicate cases from the minority class.

The most popular and successful methods to lessen the disappearing and exploding gradient
effects is the Long Short-Term Memory (LSTM) idea. By using gates to control the inputs and
outputs, this technique transforms the "sigmoid" or "tanh" hidden unit structure into a
memory cell. The hidden state portion of this model resembles a recurrent network employing
cell memory, as seen in Figure 73. Gates for input, forget, output, and cell activation make up
a cell memory.

Figure 73: Memory cell of LSTM

Similar in construction to the LSTM, the Gated Recurrent Units (GRU) streamline the

architecture by integrating memory and hidden state into a single state vector. The "reset"

gate and the "update" gate are two further gates that the GRU employs to manage

information flow. The update gate specifies how much of the new state should be

remembered, whereas the reset gate decides how much of the prior state should be

forgotten. The GRU can update and maintain information from the previous time step using

these gates. The unit cell of the GRU is seen in Figure 74.

Figure 74: Memory cell of GRU

Traditional RNNs simply take into account the data's prior context during training. While many

applications, like voice recognition, just need to look at the prior context, it is also helpful to

investigate the future context. Figure 75 shows the structure of Bidirectional RNNs in the

unfolded type. As can be seen that output from forward states are not connected to input of

backward stated, and vice versa.

Figure 75: Bidirectional RNNs structure

To get the best model, we compared augmented techniques in several classification models.

We evaluated datasets that were not enhanced, datasets that were enhanced using the

SMOTE methodology, and datasets that were oversampled randomly. Moreover, as model

classifier we used the GRU, LSTM, and the Bidirectional techniques of both models. In this

experiment, we used a single-layer architecture for all models, and we trained the model using

100 epochs.

The model's input is text vector array with maximum length of 30 and embedding size 300.

The model architecture we used employed 64 units with a dropout of 0.5 followed by a dense

layer and final layer using the softmax activation function for multiclass classification. Then

the models are compiled using Adam optimizer with a learning rate of 0.001. We divided the

data into training and testing with a comparison of 80% of the training data and 20% of the

testing data in order to evaluate the performance of each model using different augmentation

methods. Table 10 shows the result of training and testing accuracy for each model and

augmented method.

Table 10: Result of Training and Testing Accuracy

Model Aug. Testing Acc. Train Acc.

GRU

Original 0.5043 ± 0.0203 0.8943

ROS 0.8973 ± 0.0105 0.9754

SMOTE 0.3282 ± 0.0189 0.8603

LSTM

Original 0.4772 ± 0.0140 0.8870

ROS 0.8964 ± 0.0117 0.9786

SMOTE 0.3167 ± 0.0131 0.8617

Bidirectional GRU

Original 0.5063 ± 0.0213 0.8955

ROS 0.8970 ± 0.0120 0.9804

SMOTE 0.3173 ± 0.0154 0.8658

Bidirectional LSTM

Original 0.4947 ± 0.0135 0.8967

ROS 0.8995 ± 0.0119 0.9809

SMOTE 0.3256 ± 0.0195 0.8644

The SMOTE approach generally resulted in low accuracy for all models. Comparatively, the

use of Random oversampling significantly increases the performance of all classifier models.

It is proven that the SMOTE-generated synthetic samples could not accurately reflect the

minority class in the dataset. Consequently, the accuracy score of training and validation is

significantly different, which shows that the models suffer from overfitting. Contrary to the

SMOTE method, it is clearly that the ROS method can handle unbalanced data. As can be seen

in Table 10, Bidirectional LSTM achieves the best performance compared to other models.

Since each language requires two classes (fire and not-fire), we re-train the model with two

classes by modifying the class label in the Indonesian dataset, as described in sub-section 5.2.1

point 1.

We used Bidirectional LSTM and Random Over Sampling method to deal with imbalanced class

in the dataset. The input to the model is a text vector array with a maximum length of 30 and

an embedding size of 100. For binary classification, we utilised 30 units with a dropout of 0.5,

followed by a dense layer and a final layer using the sigmoid activation function. The models

are then constructed using the Adam optimizer with a learning rate of 0.01. We separated the

data into training and testing and compared 75% of the training data and 25% of the testing

data. Finally, we train the model using 100 epochs.

The model performance for fire prediction was not satisfied with the F1-score for fire

prediction was 0.00 and the f1-score for non-fire prediction was 0.93. Figure 76 depicts the

result of the classification report.

Figure 76: Bidirectional LSTM classification report

To address the aforementioned issue, we employ Machine Learning algorithms for fire

prediction in Indonesian. Four Machine Learning methods were used: Nave Bayes, K-Nearest

Neighbour, Decision Tree, and Random Forest. Table 11 shows the results of those

experiments.

Table 11: Comparison performance of ML algorithms

Algorithm F1-Score Accuracy

Naïve Bayes
Not Fire 0.76

0.64
Fire 0.21

K-Nearest
Neighbour

Not Fire 0.77
0.65

Fire 0.23

Decision Tree
 (neighbours = 5)

Not Fire 0.90
0.82

Fire 0.34

Random Forest
 (estimators = 100)

Not Fire 0.94
0.89 Fire 0.44

It seems that Random Forest is better for Fire prediction compared to Bidirectional LSTM and
other Machine Learning methods. From the results above, we built the Random Forest model
using pickle version 4.0 and save this model to the .sav file.

b. Spanish fire detection model

To train the model prediction for Spanish fire detection, we used Bidirectional LSTM. After
pre-processing the data, we separated it into 80:20 train and test datasets. The model was
then trained over 200 epochs using the single-layer architecture of Bidirectional LSTM.

The model takes a text vector array with a maximum length of 40 and an embedding size of
300 as input. For binary classification, we utilised a model architecture with 100 units with a
dropout of 0.5, followed by a dense layer and a final layer using the sigmoid activation
function. The models are then constructed with the Adam optimizer and a learning rate of
0.01. Figure 77 shows model summary using Keras library.

Figure 77: Keras model summary of Spanish fire prediction

We employed the EarlyStopping strategy during model training to reduce overfitting and
improve the model's generalisation performance. The model training was monitored using
validation accuracy. When validation accuracy does not increase after a predetermined
number of epochs, training is terminated. The patience parameter was set to 20 and the
minimum delta was 0.01. That signifies that the training would be terminated if there was no
increase in validation accuracy of at least 0.01 after 20 epochs.

Figure 78: Loss and Accuracy of Spanish fire prediction model training

Figure 78 shows the graphics of loss and accuracy model training. The iteration was stopped
at epoch 25, but the model was still slightly overfitting. Future work should be focused on
dealing with this issue.

The classification result of class prediction in Spanish is depicted in the Figure 79 below.

Figure 79: Spanish fire prediction classification report

The precision for the "not fire" class is 0.83, indicating that among the instances the model
predicted as "not fire," 83% were correct, while the remaining 17% were false positives. The
recall (also known as sensitivity) for this class is 0.89, meaning that the model correctly
identified 89% of all actual instances belonging to the "not fire" class. The F1-score, which
balances precision and recall, is 0.86, indicating a harmonic mean between these two metrics.

For the "fire" class, the precision is 0.79, signifying that among the instances predicted as
"fire," 79% were correct, while 21% were incorrect predictions. The recall for this class is 0.69,
indicating that the model identified 69% of all actual instances of the "fire" class. The F1-score
for this class is 0.74.

The overall accuracy of the model is 0.82, meaning it correctly classified 82% of all instances
in the dataset. The macro average F1-score, which considers the F1-scores of both classes
equally, is 0.80. The weighted average F1-score, which accounts for class imbalances, is 0.81.

In conclusion, the classification report provides insights into the model's performance for both
classes. While it exhibits strong precision and recall for the "not fire" class, it slightly struggles
with the "fire" class, particularly in terms of recall. Further efforts may be needed to improve
the model's ability to identify instances of the "fire" class correctly.

c. Italian fire detection model

 We did a similar model architecture of Spanish to train the model prediction for Italian fire
detection. After pre-processing the data, we separated it into 80:20 train and test datasets.
The model was then trained over 200 epochs using the single-layer architecture of
Bidirectional LSTM. Figure 80 shows model summary using Keras library.

Figure 80: Keras model summary of Italian fire prediction

The provided sequential model architecture consists of several layers designed for text
classification tasks. The model starts with an embedding layer, which transforms input tokens
into dense vectors of size 300. These vectors represent the semantic meaning of the words.
The subsequent bidirectional layer employs a bidirectional LSTM (Long Short-Term Memory)
with 200 units to capture contextual information from both directions in the input sequence.
The global max pooling1D layer extracts the most important features from the sequences.
Following this, a dense layer with 100 units utilizes these features to learn higher-level
representations. Lastly, the output layer, a dense layer with 2 units, generates the final
classification results. The model has a total of approximately 1.18 million parameters, with

341,102 of them being trainable. This architecture leverages the strengths of bidirectional
LSTM and pooling techniques for text analysis while efficiently managing its parameters.

Figure 81: Loss and Accuracy of Italian fire prediction model training

Figure 81 depicts the loss and accuracy model training graphics. The iteration was terminated
at epoch 31, but the model remained slightly overfitting. This issue should be addressed in
future work.

Figure 82: Italian fire prediction classification report

The model's precision for the "not fire" class is 0.91, signifying that out of the instances it

predicted as "not fire," 91% were accurately classified, while 9% were false positives. The

recall for the "not fire" class is 0.95, indicating that the model correctly identified 95% of all

actual instances belonging to the "not fire" class. The F1-score, which balances precision and

recall, is 0.93 for the "not fire" class.

For the "fire" class, the model's precision is 0.89, implying that among the instances predicted

as "fire," 89% were indeed correct, while 11% were incorrect predictions. The recall for the

"fire" class is 0.83, denoting that the model identified 83% of all actual instances of the "fire"

class. The F1-score for this class is 0.86.

The overall accuracy of the model is 0.91, indicating that it correctly predicted fire occurrences

in Italy with an accuracy of 91%. The macro average F1-score, which considers the F1-scores

of both classes equally, is 0.90. The weighted average F1-score, which accounts for class

imbalances, is also 0.90.

In summary, the classification report outlines the model's effectiveness in predicting fire

occurrences in Italy. It demonstrates good precision and recall values, especially for the "not

fire" class, suggesting that the model is adept at identifying non-fire instances. However, there

is a slightly lower recall for the "fire" class, implying room for improvement in correctly

identifying fire incidents. Overall, the model shows promising performance in fire prediction

for the Italian context.

3. Location Extraction

a) Indonesian Model

 Location Extraction plays important role to identify location for fire detection. In this work,

we employed Named-Entity Recognition (NER), a natural language processing (NLP) technique

that involves identifying and classifying named entities within text, such as names of people,

organizations, dates, and locations to get location from text. Location extraction using NER

specifically focuses on identifying and extracting geographical places, addresses, landmarks,

and other location-related information from text data.

In this experiment, we used Bidirectional LSTM and CRF (Conditional Random Forest) to

extract location from text. In the context of location extraction, Bidirectional LSTM helps the

NER model understand the dependencies between words in a sentence, enabling it to identify

location-related patterns more effectively.

Conditional Random Fields (CRF) is a probabilistic modelling technique that considers the

sequence of predicted labels when making predictions. In NER, CRF acts as a post-processing

layer on top of a neural network-based model. It considers the contextual relationships

between adjacent entities to ensure the predicted named entity labels follow a coherent

pattern.

We used the BioTagging dataset as seen in the Table 7. Further, the architecture of BiLSTM

and CRF in the python code can be seen in Figure 83.

Figure 83: BiLSTM and CRF for location extraction

The provided deep learning architecture is designed for sequence labelling tasks, particularly

for Named Entity Recognition (NER). It takes sequences of length 13 as input. The architecture

includes an embedding layer, which converts input tokens into dense vectors of size 20,

allowing the network to capture semantic representations of the tokens.

The Bidirectional layer employs Bidirectional Long Short-Term Memory (BiLSTM) with 200

units to capture context from both directions in the input sequence. This is followed by a

TimeDistributed layer that applies a fully connected operation to each time step individually,

generating a sequence of vectors with dimensionality 100.

The architecture concludes with a Conditional Random Field (CRF) layer, which enhances

sequence labelling tasks by considering the dependencies between adjacent labels. The CRF

layer outputs sequences of dimension 13 with 14 possible label classes. Overall, this

architecture has approximately 235,558 trainable parameters and is suitable for tasks like

NER, where it learns to label each token in a sequence with an appropriate entity class label,

benefiting from both the BiLSTM's contextual understanding and CRF's label coherence

considerations.

It is then trained using the provided training data (X_train and y_train) with a batch size of 32

and over 25 epochs. During training, 10% of the training data is used for validation. The

"verbose" parameter set to 1 indicates that training progress will be displayed.

The accuracy and loss of model training are shown in Figure 84 below.

Figure 84: Accuracy and loss training

In this scenario, we divided the data for training and testing using a 90:10 ratio. The test

outcome is depicted in Figure 85.

Figure 85: Classification report of NER using BiLSTM and CRF

The provided classification report presents the performance evaluation of a Named Entity

Recognition (NER) model on multiple named entity categories, including "geo" (geographical

locations), "org" (organizations), "per" (persons), "qty" (quantities), and "tim" (time

expressions).

In this NER evaluation, the results show variations in precision, recall, and F1-score across

different named entity categories. As we focused on location extraction, the "geo" category

achieved a precision of 0.31, indicating that around 31% of instances predicted as

geographical locations were correct. The recall for this category is 0.41, indicating that the

model identified 41% of all actual geographical locations. The F1-score for "geo" is 0.35,

representing a harmonic mean between precision and recall.

b) English Model

We used the similar model architecture for English location detection model (BiLSTM + CRF).

Figure 86 below shows the architecture and the number of total and trainable parameters.

Figure 86: English location detection architecture

In this scenario, we divided the data for training and testing using a 90:10 ratio. The test

outcome is depicted in Figure 87.

Figure 87: Classification report for English NER model

The F1-score is the harmonic mean of precision and recall. It provides a balanced measure of

a model's performance, especially when there is an imbalance in class distribution. For

geographical locations (geo), the F1-score is 0.39. The NER classification model performs

reasonably well in identifying geographical locations with moderate precision and recall,

although there's room for improvement.

5.2.3. Implementation Model
Multilingual fire detection and location extraction models can be implemented in two forms,

standalone Webapp API and integrated with the system models. We have already

implemented both methods and in the remainder we will call as first version the Standalone

Webapp API and as second version the Integrated Model Systems.

We built the first implementation of our fire detection models in a Webapp form, where they

can be accessed one-by-one through the API endpoint /isfire for fire detection and /ner for

location extraction. Further explanations are shown below (Figure 88).

Figure 88: Api Classification for fire

Input

JSON string as an input with the key “captions” contains a list of text that will be classified.

curl --location 'http://localhost:5001/api/isfire' \

--header 'Content-Type: application/json' \

--data '{

 "captions": [

 "telah terjadi kebakaran di daerah gambut Sampit",

 "Untuk mencegah kebakaran, pada musim kemarau sebaiknya warga

tidak bermain api unggun"

]

}'

http://localhost:5001/api/isfire

Figure 89: Entity recognition API

Input

JSON string as an input with the key “captions” contains a list of text that will detect the

locations.

curl --location 'http://localhost:5000/api/ner' \
--header 'Content-Type: application/json' \
--data '{
 "captions": [
 "Berdasarkan informasi dan laporan dari Taman Nasional Bromo Tengger Semeru bahwa telah
terjadi kebakaran lahan di Kawasan Gunung Bromo pada hari Senin, 11 September 2017 sebanyak 3 titik
yakni di lereng B29, Kawasan Savana (Bukit Teletubies) dan Lereng dingklik, Pananjakan."
]
}'

The standalone Webapp Api technique that we are building needs several things to be
improved, one of which is the NER model's ability to apply (deploy) in production areas and
its accuracy in recognising places contained in sentences.

We are currently working on the implementation of the 2nd version, which will offer

multilanguage model selection capabilities, allowing our system to be connected with other

pilot pipeline systems over the message bus. Based on the pilots we work with; we use the

language detection approach to choose the fire detection model based on the language in the

text input. Now, our model with several five different languages: Indonesian, English, Spanish,

Italian, and Slovak.

An implementation concept diagram for the second version of the multilingual social media

sensing application is shown in Figure 90 below.

http://localhost:5000/api/ner

Figure 90: Diagram concept of social media sensing

The following explains how the multi-language social media sensing model flows:

1. The System accepts the request from string/text and process language detection.

2. Then the system selects the model based on the language from point 1.

3. The selected model produces the response in JSON format.

Because it will be integrated with the message bus in I/O pipelining, the second version of the

model will not directly relate to the user as the first did through the Webapp API.

5.3. Component integration
At the outset, our system taps directly into the dynamic stream of Twitter, employing filters
based on forest fire-related keywords. This mechanism ensures both real-time data
acquisition and a focus on relevant tweets. Following this step, the curated tweets are
directed to a dedicated topic, named "silvanus_ff", in RabbitMQ, a robust message-brokering
service that guarantees an uninterrupted data flow and facilitates efficient consumption by
subsequent services.

The Social Media Sensing Service, developed on the Node.js platform for optimal concurrency,
consumes the "silvanus_ff" topic from RabbitMQ and orchestrates the concurrent execution
of three Python scripts. The Language Detector identifies the tweet's language, ensuring its
appropriate processing and classification. The Forest Fire Classifier determines if the tweet
indeed reports a forest fire incident. The Named Entity Recognition (NER) examines the
tweet's content to pinpoint keywords that hint at the exact location of the potential forest
fire.

Once locations are identified, these undergo transformation to geom format, a standardized
representation of a spatial location suitable for subsequent processes. All the curated and
processed information is then systematically stored in a MySQL database. This database
serves two essential functions. Firstly, it facilitates the generation of a wordpool graph, a visual
representation of word frequency, providing insights into commonly reported regions or
report intensity. Secondly, it supports the Early Warning System's trigger mechanism. This
system continuously evaluates data patterns and, upon identifying a significant number of
reports from the same location within a predefined period, activates the "silvanus_ews" topic
in RabbitMQ. This topic serves as an alert channel, consumed by external applications to notify
relevant stakeholders promptly.

To ensure portability, scalability, and ease of deployment, the entire system is encapsulated
within a Docker container. Whether implemented on local setups or cloud-based
infrastructures, this Docker integration promises seamless functionality across platforms.
Additionally, this system seamlessly integrates into larger monitoring frameworks or can
function as a standalone early warning unit.

5.4. Plans for future extensions
To reach the final goal of the system, we plan to complete the following additional tasks:

1. Creating a stakeholder notification system that is elaborate with the user interface.

2. Creating a docker image to the Silvanus Cloud so that it can be deployed and

consumed by the user interface part.

3. Adding variant languages

4. Adding dataset for fire prediction in English and Slovak

5. Processing location detection in Slovak, Spanish, and Italian

6. Health Impact Component

6.1. Concept of operation

During a wildfire incident, one of the greatest risks faced by the firefighters and people in
nearby areas is air quality. As expected, an environmental crisis situation increases the level
of gasses, as well as particles that are harmful to people within and around the danger zone.
If these changes are not quickly observed to initiate corresponding actions, the concentration
of harmful gasses and particles can become dangerously high. Therefore, the development of
an air quality monitoring system is of paramount importance.

With the Health Impact Component, we aim to develop a data flow management system from
wireless nodes that monitors air quality in the affected area, collects and stores this
information, and provides access to both rescuers and services (firefighting, rescue teams,
forestry, etc.) while supporting the provision of alerts. Air quality monitoring is carried out by
nodes composed of gas sensors for Carbon Monoxide (CO), Sulfur Dioxide (SO2), Nitrogen
Dioxide (NO2), Ozone (O3), and particulates PM2.5 and PM10.0, connected to a Raspberry Pi
microcomputer. For data collection and storage, a web server is developed with a database
and a RESTful application. The application communicates with the database for data storage
and retrieval. Users can access these functionalities through a set of secure endpoints. The
health impact component is a part of the SILVANUS project framework that reflects the
potential impact of wildfire emissions in human health, while it generates several spatial and
temporal events/alerts towards the control room in order to avoid negative consequences on
first response teams and the nearby population.

Figure 91 illustrates a basic use case for the health impact component. Regarding our initial
objective of air quality monitoring and the health impact aspect, our approach involves
equipping frontline first responders, specifically firefighters, with a compact device housing a
Raspberry Pi and five sensors. Presently, fire emissions are seamlessly recorded in a
MONGODB through a PUT request made to an appropriate endpoint. Interested stakeholders,
who share a vested interest in air quality and health impact, can retrieve the most recent
emissions data along with the air quality index (AQI) and spatiotemporal information through
straightforward GET requests directed at the designated endpoints. It is essential for these
partners to undergo authentication using the credentials provided by us to effectively utilize
our resources. Moreover, collaborating partners within SILVANUS can retrieve the above data
from the SILVANUS Storage Abstraction Layer.

Figure 91: Health impact component – use case

6.2. System implementation and results

6.2.1. Air Quality Monitoring System

6.2.1.1. Air Pollutants

The monitoring system constitutes the backbone of the health impact component as the air
quality is observed in real-time. Air quality is calculated based on the quantity of harmful
pollutants present in the atmosphere. Special sensors are used to measure these pollutants
throught a microcomputer, which supplies the sensors with voltage, provides the data
transmission channel and sends the data to a remote server. To better understand air quality
during and after a wildfire incident we compared several Air Quality Indexes according to type
of the pollutants and the air quality levels, as presented in Table 12 and Table 13. Certain
countries are omitted from the comparison (e.g., Thailand) as the formula that is used to
calculate AQI is very close to the US AQI formula, and actually even more strict on the
breakpoints level.

Table 12: Air Quality Indexes - Pollutants Comparison

Pollutants US AQI EAQI AQHI NAQI WA DER AQI

Ozone (O3) X X X X X

Particulate Matter (PM10) X X X X X

Fine Particulate Matter (PM2.5) X X X X X

Carbon Monoxide (CO) X X X

Sulfur Dioxide (SO2) X X X X

Nitrogen Dioxide (NO2) X X X X X

Ammonia (NH3) X

Plumbum - Lead (Pb) X

Table 13: Air Quality Indexes - Levels Comparison

US AQI EAQI AQHI NAQI WA DER AQI

Number of
levels

6 6 4 6 5

Level
Characterizati
on

Good
Moderate
Unhealthy for
Sensitive
Groups
Unhealthy
Very
Unhealthy
Hazardous

Good
Fair
Moderate
Poor
Very Poor
Extremely
Poor

Low Risk
Moderate
Risk
High Risk
Very High Risk

Good
Satisfactory
Moderate
Poor
Very Poor
Severe

Good
Fair
Poor
Very Poor
Extremely
Poor

The 8 more critical pollutants that are emitted into the air during a wildfire are presented in
Table 12. We can observe that every index adopts O3 and PM2.5 while the majority of the
indexes also adopts NO2. CO is considered only by the US AQI and WA DER AQI, while NH3
and Pb are considered only by the NAQI. According to the scheme presented in Table 13, AQIs
use four up to six air pollution levels. In the health impact component we use six levels (similar
to EAQI) with the following level characterizations:

• Good,

• Fair,

• Moderate,

• Poor,

• Very Poor and

• Extremely Poor.

Figure 92, demonstrates the measurements of the five key pollutants supported by our model
to determine the index level that describes the current air quality. In general, PM2.5 and
particles PM10.0 concentrations are measured as units of μg/m3. In the health impact
component we use the parts per million (ppm) unit of measurement.

Figure 92: Table of European Air Quality Index (based on pollutant concentrations in µg/m3)

6.2.1.2. Sensors – Equiped by people

6.2.1.2.1. Gas detection sensors
To detect gasses and particles, sensors from DFRobot's Gravity9 series are utilized. These
sensors offer significant advantages that can be leveraged in the development of the current
system. Firstly, the component design is modular, allowing for easy disassembly and
reassembly of the sensors. This provides the flexibility for sensors to be disassembled and
reassembled, and for one sensor to utilize the components of another without altering the
initial outcome or encountering compatibility, recognition, communication, and other issues.
Secondly, the sensors have a standardized plug-and-play interface, eliminating the need to
download and install additional drivers. The system can read the sensors upon connection.
Thirdly, the company provides an open-source electronic toolkit that covers the basic needs
for selecting the data transmission protocol, risk threshold, and basic input/output (I/O)
actions.

The gas detection sensors utilized in this component are electrochemical sensors that come
pre-calibrated from the factory. Each sensor consists of three components: the gas detector
(Sensor Probe), a signal conversion board for electrochemical factors (Signal Conversion
Board), and a 4-pin cable for connectivity (4pin Cable). These sensors support three data
transmission protocols: analog, I2C, and UART. This versatility in connectivity enables us to
select the most suitable protocol based on our specific requirements. It allows us to efficiently
handle multiple sensors in a circuit and ensures synchronous data transmission over the same
channel or in customized configurations depending on the project's needs. The selection of
the sensors is methodical rather than random. These specific sensors offer several advantages
for the development of such a system.

• Specifically, they are small in size and lightweight, so firefighters are not burdened

with wearing specialized suits that would slow them down during walking and

firefighting.

• Furthermore, their operating conditions are satisfactory, as the temperatures of their

packaging do not exceed the temperature at which they operate.

• Moreover, their operating voltage allows them to use a 5V battery, making the system

relatively small in size and therefore easy to transport.

• Additionally, their cost is not high.

• The sensors contribute to the calculation of the Air Quality Index (AQI)

The sensors have 32 programmable I2C addresses, a built-in temperature compensation
algorithm, and a threshold alarm function. They are compatible with most commercial
microcontrollers such as Arduino, ESP32, and Raspberry Pi. The operating voltage range is
from 3.3V DC to 5.5V DC, and the current consumption should be less than 5 mA. They operate
within a temperature range of -20°C to 50°C and a humidity range of 15% to 90% RH without
condensation. The sensors have a lifespan exceeding 2 years. In total, there are 12 different
gas detectors available in the market: CO, O2, NH3, H2S, NO2, HCL, H2, PH3, SO2, O3, CL2,
and HF. They are used and provide data in the same format and manner. The dimensions of
the sensors are 37×32mm. Figure 95 presents information about the sensors regarding the
four gases we measure, while Figure 94 and Figure 95 present the components of such a
sensor.

9https://www.dfrobot.com/product-1272.html, https://www.dfrobot.com/product-2508.html

https://www.dfrobot.com/product-1272.html
https://www.dfrobot.com/product-2508.html

Figure 93: Gas Sensors Specifications

Figure 94: Gas Sensor Components Figure 95:Gas Detection Sensor

6.2.1.2.2. Particles detection sensors
The PM2.5 particle detection sensor is a digital sensor that measures the concentration of
particles and can be used to determine the number of suspended particles in an air volume
ranging from 0.3 to 10 micrometers, corresponding to the particle concentration. It provides
digital output and can also extract qualitative data about the introduced particles. The sensor
operates using laser technology and follows the principles of light scattering theory. It consists
of three parts: the laser dust sensor, the sensor adapter, and the sensor adapter cable. The
sensor operates within a voltage range of 4.95V to 5.05V. It can handle a maximum current of
120 mA. The particle size (diameter) is divided into three ranges since the sensor is designed
to measure all three types of particles: [0.3, 1.0], [1.0, 2.5], and [2.5, 10] micrometers. The
measurement range is [0, 999] μm/m3. The response time is less than 10 seconds. It operates
within a temperature range of -20°C to 50°C. The humidity range for operation is [0, 99]%RH.
The dimensions of the sensor are 65×42×23 mm. It has a lifespan of more than 5 years. The
data transmission protocol used is UART. Figure 96 contains all the components of the
detection sensor for PM1.0, PM2.5 and PM10.0 particles.

Figure 96: (a) Back View of the Laser Sensor, (b) Front view of the adaptor, (c) Back view of the
adaptor, (d) Overall components

6.2.2. Raspberry-Pi
In the health impact component we utilized a Raspberry Pi 4 Model B, the latest model of the
latest generation of Raspberry Pi. Like its predecessors, this model features a System on Chip
(SoC), providing the Raspberry Pi with a general-purpose processing unit, graphics
performance, and I/O capabilities. The SoC used is the Broadcom BCM2711, which includes a
quad-core 64-bit Cortex-A72 processor operating at 1.8 GHz. The model is equipped with 8GB
LPDDR4-3200 SDRAM, supports 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless networking, has
40 GPIO Pins, and is powered by 5V DC via a USB Type-C adapter or GPIO header. The
Raspberry Pi has a set of pins. These pins are called General Purpose Input-Output (GPIO) pins.
The GPIO pins are located at the upper left of the board. There are a total of 40 pins for the
model we are using and generally in the newer models (older models had 26), arranged in two
columns. Each GPIO pin serves a specific purpose. Figure 97 shows the pins with their names
(in lowercase letters) and their roles (indicated in parentheses), along with their numbering
(in black letters). We observe that there are four pins for power supply, two for 5V and two
for 3.3V, eight for grounding, current-carrying pins for data exchange, four for pulse code
modulation configuration, and thirteen for general purposes. GPIO pins without specific roles
can be used either as a 3.3V voltage source, grounding, or input.

Figure 97: GPIO Pins

According to Figure 98, there are three types of data transmission channels: I2C, UART, and
SPI. Among these three, we will focus only on I2C and UART (as the two channels are defined
by protocols that are synonymous, here the terms channel and protocol are considered mostly
interchangeable). Both of them are serial communication channels. In computer-to-peripheral
device communication and data exchange, data flow occurs in two forms: serial and parallel.
In parallel communication, each bit of the data channel is transmitted through a separate
channel (physical cable), while in serial communication, the bits must be transmitted through
a single channel. In serial communication, both ends need to know the start and end of data
transmission, as well as ensure the correct transmission of bits. Therefore, additional signals
are required to inform these details to the receiver. If these signals are on the same channel
as the exchanged digits, the communication is called asynchronous. If a separate channel is
used, then the signals are clock pulses, and the communication is called synchronous. The
communication protocol I2C (Inter-Integrated Circuit) defines synchronous serial
communication using two signal channels or lines: SCL, which stands for Serial Clock, and SDA,
which stands for Serial Data. The UART (Universal Asynchronous Receiver/Transmitter)
communication protocol defines asynchronous serial communication, as its name suggests.

6.2.3. Sensors configuration
Since Raspberry Pi and gas sensors support multiple, common data communication protocols
and particles sensor support only UART protocol, the protocol that is used for communication
between Raspberry Pi and particles sensor is UART and for communication between
Raspberry Pi and gas sensors is I2C. For the particle sensor, the baud rate is set to 9600 (default
value). For the gas sensors, the bus that is used is the first available and four different
addresses are used, one for each sensor, from the 32. The connectivity is such that SDA and
SCL is common for all sensors, which allows the communication through the same bus.

6.2.4. Raspberry Pi implementation
A gas sensor, prior to its initial operation, needs to establish data acquisition in a passive
manner (i.e., data is not continuously transmitted from the sensor but upon request from the
Raspberry Pi), incorporates temperature compensation into its calculations, and ultimately
identifies the specific gas it detects. During data collection, the data is stored within a
structure along with additional information about the node, such as its identifier and location,
which will be sent to the server in the form of a JSON object. After data collection and their
transformation in the JSON format, the node communicates with the server.

6.2.5. Complete air quality monitoring system

6.2.5.1. Sensors connected to the Raspberry Pi
Figure 98 illustrates an assembled final node of the air quality detection system.

Figure 98: Air Quality Observation System

6.2.5.2. Additional sensors and materials
Figure 99 shows the inside of the sensor system and its components. Besides the gas and
particle sensors and Raspberry Pi, the system consists of a WaveShare Solar Power Manager
(B)10, the SIM7600E-H 4G HAT11 module with a 4G antenna and a GPS antenna, together with
the breadboard and the cables. With these additional components, the system is capable of
being powered, communicating with the server wherever it is located and acknowledging its
location.

The SIM module, 4G and GPS antenna form a single unit responsible for the provision of
telecommunications services, like dial-up, telephone call, SMS, mail, transfer protocols like
TCP, UDP, DTMF, HTTP, FTP, etc., GPS, BeiDou, Glonass and LBS base station positioning. The
SIM module contains 40 PIN GPIO extension header for connecting Raspberry Pi and SIM card
slot, alongside with other features that are not used in this system, like earphone jack, USB
and UART interfaces, TF card slot etc. This module works like a hat to the Raspberry Pi, and
does not limit its function.

The solar power bank provides the Raspberry with stored power from an external solar power
source (not included in this component). It contains an embedded 10000 mAh Li-Po battery
and supports 6V~24V solar panels. It can be charged by either solar panel or type-C power
adapter. Due to its features (Maximum Power Point Tracking function, multi protection

10 https://www.waveshare.com/solar-power-manager-b.htm
11 https://www.waveshare.com/wiki/SIM7600E-H_4G_HAT

https://www.waveshare.com/solar-power-manager-b.htm
https://www.waveshare.com/wiki/SIM7600E-H_4G_HAT

circuits, operating temperature in the range -40oC~80oC, 5V USB input) it is considered
suitable for use in this system.

Figure 99: Interior System and Components

6.2.5.3. RESTful API

6.2.5.3.1. RESTful API overview
The data collected from the sensors are saved to a web application. This is because the data
must be located in one place and not distributed throughout multiple computers, so the end-
user will be able to easily access them. Since multiple Raspberry Pis are used, this requirement
is crucial for the development of the end system. Also, the Raspberry Pis are not capable of
holding multiple data, because their resources are limited and this could undermine its ability
to collect real-time data. This application is able to communicate not only with the Raspberry
Pis, but also with users that want to access and read the data and the AQI. It is developed on
a REST API, providing other applications with the ability to exchange data with the server.
Additionally, the information received from the nodes is stored and organized using a NoSQL
database. To gain access to API’s endpoints, users must be authenticated. The system
supports an authentication system, using Basic Authentication with Roles.

The RESTful application is implemented in Python, using the Flask framework12. Flask is a
lightweight framework which provides almost all aspects of a framework, like web template
system and URL mapping. The database management system used to store the data was
MongoDB13. MongoDB is a NoSQL database management system. These systems are
distinguished by their widespread duplication and division of data among geographically
distributed nodes, flexible system state and the model of ultimate consistency across replicas.

6.2.5.3.2. Deployed VM
The web application must run continuously and receive requests. For this reason, a web server
is used. The server is responsible for handling files and requests. The web server consists of 2
server programs: Gunicorn14 and Nginx15. Gunicorn server provides the Python Web Server
Gateway Interface (WSGI). The WSGI is established in order to allow the different Python web
applications to communicate with the web server program. In general, a web server program
communicates with a backend application using an interface. For back-end applications
written in Python, the standard interface for the servers is WSGI. It is built-in to the Gunicorn,
so no further actions are required. Gunicorn is not capable enough to handle issues that may
arise, such as network congestion, load balancing, etc. and is not scalable. The Nginx server is
able to address these issues. Is also able to scale the application and address security issues.
Figure 100 presents the specifications and the integrated software components e.g.,
frameworks, web server and database of the VM where the health impact component is
implemented.

Figure 100: VM characteristics and integrated components

6.2.5.3.3. RESTful API endpoints
The REST API consists of endpoints that are responsible for accessing the database. Through
them, users can add or read data directly from the database. The data are in JSON form. These
endpoints are not accessible by everyone verified, but from users with specific roles, which
also differs for every endpoint. Table 14 describes the endpoints.

12 https://flask.palletsprojects.com/en/2.3.x/
13 https://www.mongodb.com/
14 https://gunicorn.org/
15 https://www.nginx.com/

https://flask.palletsprojects.com/en/2.3.x/
https://www.mongodb.com/
https://gunicorn.org/
https://www.nginx.com/

Table 14: Endpoints description.

ENDPOINT HTTP
METHOD

DESCRIPTION PARAMETERS

/insert-data POST Send data to the
server.

- JSON file
- Authentication

Credentials

/get-latest-data GET Get the latest added
data.

- Number of data
- Authentication

Credentials

/aqi GET Get the most recent
AQI measurement.

- Authentication
Credentials

/health-impact-data-
metadata

POST emissions, AQI and
metadata

- SILVANUS Credentials

Endpoint: insert-data

This endpoint is periodically called from Raspberry Pis to send the data they have collected to
the web server. They contain the concentration values of the observed emissions,
geographical coordinates and a unique id. These data are just collected and not processed in
the Raspberry Pi. The processing is performed on the server. The data are sent in JSON form,
as shown in Figure 1010. The web application then registers these in two collections, one
which contains only the concentrations of the emissions and one which contains the
calculated European Air Quality Index (EAQI).

{

 "Emissions": {

 "CO": 0.0,

 "SO2": 0.0,

 "NO2": 0.0,

 "O3": 0.0,

 "PM1.0": 0,

 "PM2.5": 0,

 "PM10.0": 0,

 },

 "Pi_id": 1,

 "Coordinates": [18.5, 51.2]

Figure 101: /insert endpoint sent JSON file

Endpoint: get-latest-data

Using this endpoint, authenticated users can access the database and retrieve the latest
chronologically registered data, added from the Raspberry Pi. In order to pass the number of
data that will be retrieved, users insert it into the URL as an HTTP header argument in the
form ?emissions=<number>. The data that each user requests are returned to each one as a
list of JSON files in chronological order. Figure 102 presents the list of JSON files with the three
most recently registered data.

[

 {

 "metadata": {

 "sensorId": 0,

 "position": {

 "Longitude": 22.4387,

 "Latitude": 38.8749

 }

 },

 "timestamp": "2023-08-29T09:59:40.675506Z",

 "Emissions": {

 "CO": 0.0,

 "SO2": 0.0,

 "O3": 0.0,

 "NO2": 0.0,

 "PM1.0": 0,

 "PM2.5": 0,

 "PM10.0": 0

 }

 },

 {

 "metadata": {

 "sensorId": 0,

 "position": {

 "Longitude": 22.4387,

 "Latitude": 38.8749

 }

 },

 "timestamp": "2023-08-29T09:58:49.429824Z",

 "Emissions": {

 "CO": 0.0,

 "SO2": 0.0,

 "O3": 0.0,

 "NO2": 0.0,

 "PM1.0": 0,

 "PM2.5": 15,

 "PM10.0": 0

 }

 },

 {

 "metadata": {

 "sensorId": 0,

 "position": {

 "Longitude": 22.4387,

 "Latitude": 38.8749

 }

 },

 "timestamp": "2023-08-29T09:52:06.662253Z",

 "Emissions": {

 "CO": 0.0,

 "SO2": 0.0,

 "O3": 0.0,

 "NO2": 0.0,

 "PM1.0": 0,

 "PM2.5": 0,

 "PM10.0": 0

 }

 }

]

Figure 102: /get-latest-data endpoint retrieved JSON

Endpoint: aqi

This endpoint is used to retrieve the most recently registered AQI. Authenticated users calling
this endpoint, will receive a JSON file with information for the AQI, as shown in Figure 103.
The AQI is retrieved from the collection with the calculated EAQI.

{

 "AQI": "Good",

 "position": {

 "Latitude": 38.8749,

 "Longitude": 22.4387

 },

 "radius": 2,

 "sensorId": 0,

 "timestamp": "2023-08-29T09:59:40.675506Z"

}

Figure 103: /aqi endpoint retrieved JSON file

Endpoint: health-impact-data-metadata

The above endpoint periodically posts a multipart http request to SILVANUS Storage
Abstraction Layer (SAL). Two json files are ingested into SAL, namely

A. data.json that contains a structured representation of data, specifically related

to air quality sensor readings and metadata and

B. meta-data.json that contains metadata information associated with the

data.json file.

Figure 105 and Figure 106 present the latter two json files (in-depth description about the
JSON files is provided in D5.1).

{

 "uuid": "uth-123123-lkasjd82-askjd91230asd",

 "sensors_type": [

 "PM1.0",

 "PM2.5",

 "PM10.0",

 "sulfur dioxide",

 "carbon monoxide",

 "nitrogen dioxide",

 "ozone"

],

 "timestamp": "2023-04-23T11:29:36.372+00:00",

 "location": [

 {

 "placename": "somewhere",

 "geometry": {

 "type": "Point",

 "coordinates": [

 {

 "lat": 35.151688,

 "lon": 33.350244

 }

]

 }

 }

],

 "area": {

 "radius:": 2,

 "unit": "meter"

 },

 "sensor_id": "raspberry_1",

 "sensory_data": {

 "PM1.0": {

 "value": 228.0,

 "unit": " micrograms per cubic meter"

 },

 "PM2.5": {

 "value": 230.0,

 "unit": " micrograms per cubic meter"

 },

 "PM10.0": {

 "value": 527.0,

 "unit": " micrograms per cubic meter"

 },

 "sulfur dioxide": {

 "value": 228.0,

 "unit": "ppm"

 },

 "carbon monoxide": {

 "value": 1.0,

 "unit": "ppm"

 },

 "nitrogen dioxide": {

 "value": 0.2,

 "unit": "ppm"

 },

 "ozone": {

 "value": 0.2,

 "unit": "ppm"

 }

 },

 "AQI": "Extremely Poor"

}

Figure 104: data.json file

{

 "descriptor": {

 "uuid": "uth-123123-lkasjd82-askjd91230asd",

 "obj-class": "IoT",

 "format": {

 "type": "json",

 "resolution": "100",

 "output": "json"

 },

 "access": "default",

 "dataset-type": "air-quality",

 "created": "1674574406.7829435"

 },

 "spatial": {

 "bbox": "POLYGON ((16.0295831170816712 41.9183734508349062,

16.0295831170816712 41.8832522880823319, 16.0872243646491313

41.8832522880823319, 16.0872243646491313 41.9183734508349062,

16.0295831170816712 41.9183734508349062))",

 "coordinates": [

 {

 "lat": 41.918373450834906,

 "lon": 16.02958311708167

 },

 {

 "lat": 41.88325228808233,

 "lon": 16.02958311708167

 },

 {

 "lat": 41.88325228808233,

 "lon": 16.08722436464913

 },

 {

 "lat": 41.918373450834906,

 "lon": 16.08722436464913

 }

],

 "pilot": "greek"

 },

 "temporal": {

 "datetime": "latest",

 "daterange": "from:to"

 },

 "lineage": {

 "source": "[]",

 "processing": "raw"

 },

 "tag": {

 "device": "raspberry pi",

 "sensors": [

 "PM1.0",

 "PM2.5",

 "PM10.0",

 "sulfur dioxide",

 "carbon monoxide",

 "nitrogen dioxide",

 "ozone"

],

 "AQI": true

 }

}

Figure 105: meta-data.json file

6.2.5.4. Data visualization
Another endpoint has been developed, in order to fulfill the need of data visualization in real
time. This endpoint renders a dynamic site that plots a bar chart and a line chart, which
represent the change to concentrations and AQI in real time, based on the latest data
registered. The bar chart represents the change of the value of the AQI as percentage (0 for
“Good”, 0.2 for “Average” and so on). The line chart represents the change of the value of the
concentration in time. It consists of five lines, each corresponding to an emission that is used
in the calculation of the AQI. These plots update when new emissions observations are
registered in the database. Figure 106 shows the website’s interface.

Figure 106: Visualization webpage

6.3. Sensors – Attached to vehicles or ground

6.3.1. Smart Spot
Besides the sensors that are used by the firefighters, another set of sensors are used, in order
to monitor the wildfire spread in the forest. The sensors that are used are ready products of
Libelium, specifically the Libelium Smart Spot model16 (Figure 107) Libelium offers ready-made
solutions for more general IoT applications, like measuring air and noise pollution, air quality
pollutants, water quality and detecting fire. This specific model is well-suited for monitoring
diverse environmental aspects like air quality, temperature, humidity, noise, and it can also
function as a weather station. It's a comprehensive device that incorporates essential sensors
for these functions, along with hardware and software that facilitate the gathering and
sending of measurements, eliminating the necessity for extra purchases or user-initiated
software setup. This feature streamlines the process of installation, administration, setup, and
communication. Furthermore, the system's utility extends to remote applications, thanks to
its power alternatives like linking to solar panels or high-capacity batteries. Table 15contains
specification information about Smart Spot.

Table 15: Libelium Smart Spot Specifications

OS FreeRTOS

CPU Dual Core 240MHz

RAM 16MB

Connectivity WiFi, NB-IoT

Remote Control Homard Platform

Energy Consumption 180-300 mA Active

Voltage 5V

Size 300x200x36,7 mm

Operating Temperature [-30, 60] oC

Weight 1,8kg

Gas Sensors NO2, H2S, CO, NO, SO2, O3, NH3, CO

Particle Sensors PM1.0, PM2.5, PM10.0

Wind Parameters Temperature, Humidity, Pressure

16 https://marketplace.eiturbanmobility.eu/products/hopu-smart-spot/

https://marketplace.eiturbanmobility.eu/products/hopu-smart-spot/

Figure 107: Smart Spot - IoT device for environmental parameter sensing

6.3.2. 2. Smart Spot configuration
Smart Spot management can be accomplished using the following platform:
https://homard.hopu.eu/ . The platform encompasses diverse functionalities crucial for
effective device management. It supports remote diagnostics and monitoring of device status,
memory usage, battery health, and more. Connectivity options, security features, and the
ability to remotely manage device peripherals are incorporated, along with features like
remote locking and wiping for lost or compromised devices. Overall, the platform ensures
comprehensive device management for enhanced performance, security, and operational
control.

6.3.3. Smart Spot technical dashboard
A visualization dashboard is enabled in https://iprism.hopu.eu/ . Two panels have been
integrated to visually represent the presence of gases (NO2 and O3) and particulate matter
(PM10, PM2.5, and PM1) within the proximity of the deployed smart spot devices. Figure 108
and Figure 109 illustrate pollutant measurements for O3 and PM2.5 within a specific
geographical zone.

https://homard.hopu.eu/
https://iprism.hopu.eu/

Figure 108: Visualization dashboard (O3)

Figure 109: Visualization dashboard (PM2.5)

6.3.4. Smart Spot MQTT Broker
For the communication between Smart Spot sensors and end users the MQTT protocol is used.
Message Queueing Telemetry Transport (MQTT) protocol provides connection between
devices and networks with middleware and applications. Multiple clients connect and
exchange information with each other through a broker, which is responsible for information

distribution. The protocol uses the publish-subscribe model, where a publisher (one of the
clients) publishes messages to topics, and clients subscribed to those topics (subscribers) can
read these messages. This architecture enables many-to-many communication as well as
communication between machine-to-machine, machine-to-server, and server-to-server.
Transmission relies on TCP/IP but can also extend to TSL/SSL. In this work we select the
Mosquitto17 broker which implements the MQTT protocol. In general, the Mosquitto system
has three main parts: the Mosquitto broker, the functions that let clients publish and
subscribe to messages, and the library for setting up the client's role. Mosquitto is designed
to work with simple message systems, especially for devices that don't have a lot of power.
It's compatible with the latest MQTT protocol, it's open-source, and it offers features like
dynamic topics, support for web connections, bridges and security through user verification.

MQTT broker deployment and exploitation is presented in Figure 110. Initially, we set up a
Mosquitto MQTT broker within a Docker18 container hosted on our virtual machine.
Subsequently, we configured each equipment to publish data at five-minute intervals to two
specified topics, respectively (lib1attrs and lib2attrs). Stakeholders who possess an interest in
air quality, subscription to our broker is achievable through MQTT clients such as MQTT
Explorer or the Paho19 package in Python. Portainer.io20 is also installed to our VM as a
container management tool. The operational procedure of the MQTT Explorer client is
illustrated in Figure 111. In this instance, a client has been successfully subscribed to the topic
"lib1attrs," and at regular 5-minute intervals, it receives a JSON file, as depicted in Figure 112.
We have also developed a sample Python code that users can easily employ (Figure 113). This
code demonstrates the setup of an MQTT client to connect to the specified broker, subscribe
to a topic, and handle incoming messages.

Figure 110: Broker deployment and configuration

17 https://mosquitto.org/
18 https://www.docker.com/
19 https://eclipse.dev/paho/index.php?page=clients/python/index.php
20 https://www.portainer.io/

https://mosquitto.org/
https://www.docker.com/
https://eclipse.dev/paho/index.php?page=clients/python/index.php
https://www.portainer.io/

Figure 111: MQTT Explorer Client

{

 "TimeInstant": "2023-04-30T18:10:00Z",

 "period": 5,

 "status": "connected",

 "no2-a4": 94.830001831054688,

 "ox-a431": 29.280000686645508,

 "pm10": 15.006196975708008,

 "pm2": 10.773552894592285,

 "pm1": 7.3032760620117188

}

Figure 112: JSON file

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):

 print("Connected with result code "+str(rc))

 client.subscribe("lib1attrs")

def on_message(client, userdata, msg):

 print(msg.topic+" "+str(msg.payload))

 print("Received message: ", str(msg.payload.decode("utf-8")))

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

client.connect("silvanus.uth.gr", 1883, 60)

client.loop_forever()

Figure 113: Python’s paho package

6.4. Component integration
In the context of application integration, pilots can straightforwardly incorporate our system
into their operations. This is achieved by initiating HTTP access via our REST API. Detailed
information about the API is available in the previous section (6.2.5.3) while information can
be also accessible on Postman using the following link:
https://documenter.getpostman.com/view/29042250/2s9Xy2QCLs .

Regarding the data ingestion from the raspberry sensors into the SILVANUS Storage
Abstraction Layer (SAL), a comprehensive description has already been outlined in D5.1. This
documentation provides an in-depth description about two JSON files, namely "data.json" and
"meta-data.json" as well as for the accompanying Python code which is responsible to
produce/manage. File data.json contains a structured representation of data, specifically
related to air quality sensor readings, while meta-data.json contains metadata information
associated with the data.json file. Both files successfully ingested into SAL using a multipart
POST request. Pollutant measurements obtained from the smart spot device can be accessed
through the MQTT protocol, as outlined in section (6.3.4). A Mosquitto broker is operational
within a Docker container, enabling devices to publish data to designated topics, while users
can subscribe to these topics to retrieve valuable information. For deployment, we use the
Virtual Machine described in section (6.2.5.3.2). Detailed documentation about the
deployment can be found on the Silvanus GitHub: https://github.com/silvanus-prj/health-
impact.

6.5. Plans for future extensions
In the first places of our future agenda is to a) demonstrate another air quality component
that can seamlessly attached to ground vehicles or buildings. This particular component will
include a Smart Spot solution from Libelium and will operate through communication with an
MQTT broker, b) conducting practical testing of the showcased health impact component
during a real wildfire incident.

https://documenter.getpostman.com/view/29042250/2s9Xy2QCLs
https://github.com/silvanus-prj/health-impact
https://github.com/silvanus-prj/health-impact

7. Evacuation route planning

7.1. Concept of operation
The evacuation paths planning module aims to ensure the safe movement of citizens and fire
responders away from an area affected by a wildfire incident. This goal will be achieved by
developing functional synergies and interactions with other modules of the SILVANUS
platform and some open external tools.

The module runs continuously on a Virtual Machine (VM) and is accessible to authorized users
through straightforward HTTP GET requests (further information is provided in Section
7.2.1.2). Moreover, the module will be triggered when a new fire-related message is published
to the broker or when a new event is added to the knowledge graph, signaling the need for a
safe evacuation of an area in danger. Upon request, the module retrieves suitable contextual
data from multiple sources (e.g., fire location, weather, fire front, firefighters’ location and
burned area). Next, the module interacts with a) the Health Impact Component to obtain
valuable insights about the air quality and characterize the neighboring sub-areas of interest
in terms of their potential health implication and b) with a smoke dispersion module to obtain
informations regarding the dispersion of the smoke in the area. Additionally, data regarding
population characteristics and locations are necessary and are fetched after contacting the
SILVANUS Storage Abstraction Layer (SAL). Once the module gathers all the necessary inputs,
it estimates the safe areas and paths using a greedy reward-based algorithm adopted in
OpenRouteService. The results of the algorithm are then sent to the Command and Control
center and may be distributed to other interested actors, e.g., citizens and first response
teams.

7.2. Software implementation and results
To operate the evacuation route planning module, certain data inputs are essential, including
fire spread projections, burnt area information, firefighters' locations, smoke dispersion
details, plume height data, and population distribution data. Unfortunately, the majority of
these inputs are currently unavailable. As a result, our evaluation proceeds using synthetic
data that closely approximates realistic fire behavior. Specifically, for simulating smoke
dispersion, we've implemented a Gaussian plume model to estimate pollutant concentrations
in the atmosphere and accurately simulate smoke movement. The rest of this section is
organized as follows: we begin by introducing the smoke dispersion model, followed by an
analysis of the fundamental components of the evacuation path planning module and the
presentation of various evacuation scenarios based on different data inputs.

7.2.1. Smoke dispersion
Smoke from wildfires has the potential to cause various temporal and spatial effects. Land
managers are tasked with the challenge of reconciling concerns related to human health,
nuisance smoke, and transportation hazards with matters pertaining to wildlife management,
forest health and safety, and ecosystem restoration (Achtemeier et. Al, 1998).

Models designed to forecast smoke impacts of wildfires consist of several components. The
first component involves a comprehensive description of the emissions source, which should
include both pollutants and heat release. The second component requires the determination
of plume rise, which involves an assessment of the atmospheric stability and wind profile, as
well as the fire-source rate of heat release, to determine the vertical extent of the plume. The
third component, which partially overlaps with the plume rise element, entails the actual
movement of the smoke (namely, the transport and dispersion) by the ambient wind
(Goodrick et. Al2012).

Most smoke dispersion models estimate the concentration of pollutants downwind of a
wildfire source utilizing input data on the following (Good Practice Guide, 2004):

● rate of emission of pollutants

● features of the emissions source

● topographical characteristics of the local region

● meteorological conditions of the surrounding area

● ambient or background concentrations of pollutants.

A comprehensive depiction of the utilization of this data in a smoke dispersion model is
presented in Figure 114.

Figure 114: Smoke dispersion modeling process (Good Practice Guide, 2004)

The outcomes of dispersion modeling can furnish an approximation of impacted areas,
ambient concentrations, and guide the selection of protective measures suitable for
application in the occurrence of a burning event. These protective measures may encompass
the evacuation for citizens and first responders located in the downwind direction.

7.2.1.1. Gaussian-plume models - Theoretical Background
Gaussian-plume models are extensively implemented, well understood, and effortlessly
applicable, and have been recognized globally until recently, for smoke dispersion estimation.
The formula adopted is simple and describes the concentration field generated in three
dimensions by a point source under conditions of stationary meteorology and emission. It
must be noted that these models operate on certain assumptions:

● the dispersion of the plume follows a Gaussian distribution in both the horizontal and

vertical dimensions, with corresponding standard deviations, and

● complete reflection of the plume occurs at the surface of the Earth (i.e., no reaction

or deposition) (Zannetti et. Al, 1990), (Turner et. Al. 1970).

The general equation to estimate the steady state concentration of an air pollutant is given as
follows:

where:

C = mean concentration of a pollutant at a point (x,y,z) [μg/m3]

H = effective source height [m] - physical source height and plume rise

Q = uniform pollutant emission rate [mass/s]

σy = standard deviation of plume concentration distribution in the horizontal [m]

σz = standard deviation of plume concentration distribution in the vertical [m]

u = mean wind speed [m/s] - in downwind direction

Figure 115 and Figure 116 illustrate the aforementioned concepts.

Figure 115: Gaussian air pollutant dispersion plume and coordinate system (from

en.wikipedia.org)

Figure 116: Plume rise (from http://www-personal.umich.edu/~weberg/eff_stack_height.htm)

Values for σy and σz depend on the stability class of the atmosphere, which in turn can be
determined by assessing wind speed at a height of approximately 10 meters, and by examining
incoming solar radiation during the day, or cloud cover during the night. They can be
estimated at a certain downwind distance x as (Turner et. Al. 1970), (Gifford et. Al. 1961) ,
(Gifford et. Al, 1980):

where the constant values are given in Table 16.

Table 16: Values of the constants for the estimation of σy and σz

Stability
Class

k1 k2 k3 k4 k5

A 0.250 927 0.189 0.1020 -1.918

B 0.202 370 0.162 0.0962 -0.101

C 0.134 283 0.134 0.0722 0.102

D 0.0787 707 0.135 0.0475 0.465

E 0.0566 1,070 0.137 0.0335 0.624

F 0.0370 1,170 0.134 0.0220 0.700

Pausquill’s atmosphere stability categories (Pasquill, F. 1961) (A - Extremely unstable; B -
Moderately unstable; C - Slightly unstable; D - Neutral; E - Slightly stable; F - Moderately
stable) are presented in Table 17.

Table 17: Atmospheric Stability Classes

Surface
Wind

Speed (at
10 m)

[m/sec]

Day Night

Incoming Solar Radiation Thinly Overcast

Strong Moderate Slight ≥ 4/8 Cloud ≤ 3/8 Cloud

< 2 A A - B B

2 - 3 A - B B C E F

3 - 5 B B - C C D E

5 - 6 C C - D D D D

> 6 C D D D D

The curves of σy and σz as produced as a function of the downwind distance from the
source, x, are presented in Figure 117. The crucial aspect to consider is that, in unstable
conditions, the standard deviations increase rapidly in the downwind direction, whereas in
stable conditions, the standard deviations remain modest in the downwind direction.

Horizontal Dispersion Coefficient (σy) Vertical Dispersion Coefficient (σz)

Figure 117: Curves of σy and σz for stability classes as a function of distance from the source

(Varma, M. S. A. K. 2014).

Gaussian plume models operate under the assumption that smoke moves in a straight line
during steady-state, homogeneous conditions. Steady-state models are capable of calculating
concentrations for every hour by utilizing an emission rate as well as meteorological
conditions that remain consistent throughout the entire modeling domain. Consequently, the
models are able to simulate average concentrations on an hourly basis (Good practice, 2004).
However, regions with varying weather conditions may violate these assumptions and
decrease the reliability of the outcomes. Nonetheless, one benefit of plume models is that
they do not demand a comprehensive meteorological input and are highly advantageous
when there is a shortage of meteorological information available (Goodrick et. Al, 2012).

7.2.1.2. Implementation
A Gaussian plume model has been developed in Python to predict hourly smoke dispersion,
leveraging the educational material provided in (Connoly, 2023). This model allows to capture
the variation of effects caused by wind fluctuations and speed, vertical stability, and existence
of multiple fire sources on smoke behavior and ground level concentrations. This Gaussian
plume model requires the input of values related to the number, coordinates and effective
height of the fire sources, the pollutants mass in grams / second emitted by each source and
the meteorological conditions in the field, like the speed and direction of the current wind
blowing. The following are illustrative examples that illustrate the operation of the proposed
model.

Differing wind fluctuations

In the first set of experiments, the impact of assumptions regarding wind direction on the
spread of pollutants is demonstrated. Normally, wind speed and direction are derived from
observational data or a product of a forecast model. However, for the purposes of this set of
experiments, we generate a synthetic dataset using one of three methods:

● a constant wind direction (135o),

● a completely random wind direction, or

● a prevailing wind direction (135o) with some variability on either side

The wind speed is set to 10 m/s. It is also assumed that the effective height of the wildfire
source is 50 m and 40 g/s particulate matter PM10 are released. These scenarios are tested
for neutral vertical stability and the burning event takes place in northern Euboea. The
respective hourly outcomes are presented in Figure 118 . The colors correspond to European
Air Quality Index21 levels.

a) constant wind direction b) random wind direction c) prevailing wind direction

Figure 118: Differing wind fluctuations

Multiple wildfire sources

The effects of multiple wildfire sources on the ground level concentrations are then
investigated. In this case, the prevailing wind is adopted as a basis for study, where the
presence of two or threye different sources exhibiting identical effective height and quantity
of pollutants released (i.e., H = 50m and Q = 40 g/s), is thoroughly examined. The rest of the
input values are kept as above. The effects that including two or three sources has on ground
level concentrations of pollutant (PM10) are shown in Figure 119.

a) two sources b) three sources

Figure 119: Multiple wildfire sources

Vertical stability

Finally, we want to investigate the effects of the vertical stability of the atmosphere on the
ground level concentrations of pollutants. In this set of experiments, a wildfire source is

21 https://airindex.eea.europa.eu/Map/AQI/Viewer/

adopted (H = 50m and Q = 40 g/s), and the vertical stability takes all possible values according
to Pausquill (i.e., A - F), under the same meteorological conditions. Figure 120 demonstrates
the outcomes of the proposed model.

A - Extremely unstable B - Moderately unstable C - Slightly unstable

D - Neutral E - Slightly stable F - Moderately stable

Figure 120: Vertical stability effects

7.2.2. Evacuation route planning
In this section, we outline the process of creating a strategy to safely relocate individuals from
hazardous zones to designated safety areas. This comprehensive planning process
encompasses the following key components: a) Risk Assessment: Evaluating potential hazards
and threats; b) Population Analysis: Assessing the demographic characteristics of the affected
population; c) Definition of Safe Areas: Identifying secure locations for evacuees; d) Route
Selection: Determining the most suitable evacuation routes; e) Simulation Testing:
Conducting simulated evacuation tests for evaluation.

7.2.2.1. Risk assessment - Module triggering
The organized preventive removal of citizens (evacuation) is an action that can be
implemented promptly in areas where a catastrophic event is anticipated. This measure is
taken to protect the lives and health of the citizens. The risk of staying within these vulnerable
areas outweighs the risk of relocating to a safe place. The command centers based on the
collected data from the appropriate repositories and modules concerning the fuel
characteristics and the topography of the affected area, the meteorological conditions, the
fire spread forecast, the ambient air quality and the smoke dispersion forecast assess the
wildfire event intensity and the subsequent wildfire hazard. The decision to formulate
evacuation plans is determined by the estimated levels of risk and hazard. When necessary,
the command centers trigger (by placing a new emergency message on the queue) the
corresponding module to design safe and appropriate evacuation routes Figure 121).

Figure 121: Evacuation Route Planning Module Triggering

7.2.2.2. Module overview
In this section the Evacuation Route Planning module's inputs, operation and outputs are
thoroughly demonstrated. A comprehensive description is presented in Figure 122.

Figure 122: Evacuation Route Planning Interactions

7.2.2.2.1. Module inputs
When an emergency message is produced, the evacuation route planning component is
activated, initiating a search within the SILVANUS Cloud to retrieve all the necessary inputs.
The following list depicts all the required inputs, along with their corresponding values, used
in our experimental evaluation (if an input is not currently available in the SAL we create
synthetic data).

1. Ambient Area Features
An accurate planning of evacuation routes requires the detailed description of the forms and
characteristics of the area where the wildfire phenomenon takes place. Usually, these

features are depicted in the form of maps. For demonstration purposes, we have chosen the
island of Euboea (SILVANUS pilot site) and collected various physical features such as roads
and buildings from openstreetmaps (OSM). Selecting an island as the primary input for
evaluating the evacuation planning component offers several distinct advantages since a)
Euboea provides a controlled and isolated environment, ideal for modeling and analyzing
evacuation scenarios without significant external interference, b) Euboea presents unique
challenges related to evacuation due to their geographical features, such as limited access
points and varying population densities, and c) Euboea has a unique escape route to the rest
of Greece, allowing us to study congestion phenomena when multiple residents need to
evacuate promptly. Implementation is performed in Python and the folium library is used to
create several types of Leaflet maps.

2. Smoke Dispersion and Fire Behaviour - Meteorology
In addition, it is vital to determine the hazards and threats to the lives and health of nearby
citizens and first responders as a result of wildfires. The risk posed to individuals arises from
the fact that their bodies are subjected to extreme heat caused by the burning of biomass, as
well as from the release of combustion derivatives that diffuse into the atmosphere. The
smoke produced consists of a variety of suspended particles. The composition of the mixture
is determined by the type of biomass that is burning. The health effects of breathing in these
particles vary according to their characteristics, the degree and duration of exposure, the state
of the surrounding air, the overall level of health of individuals, as well as how each person's
body reacts to them (Guidelines, 2013).

In order to estimate the fire and smoke behavior, the /evacuations/smoke-fire endpoint has
been developed. This endpoint implements a typical fire spread scenario and the subsequent
estimation of the smoke dispersion adopting the aforementioned Gaussian plume model and
taking into account the inputs concerning the required meteorological conditions (i.e.,
direction and speed of wind, and humidity level). When called, it receives the arguments and
executes the calculations. The result is then saved as a Features Collection of GeoJSON format
and the response with the JSON file is sent back to the caller. A demonstrative example is
presented in Figure 132.

The evacuation paths planning module aims to ensure the safe movement of citizens and fire
responders away from an area affected by a wildfire incident. This goal will be achieved by
developing functional synergies and interactions with other modules of the SILVANUS
platform and some open external tools.

The module runs continuously on a Virtual Machine (VM) and is accessible to authorized users
through straightforward HTTP GET requests (further information is provided in Section ??).
Moreover, the module will be triggered when a new fire-related message is published to the
broker or when a new event is added to the knowledge graph, signaling the need for a safe
evacuation of an area in danger. Upon request, the module retrieves suitable contextual data
from multiple sources (e.g., fire location, weather, fire front, firefighters location and burned
area). Next, the module interacts with a) the Health Impact Component to obtain valuable
insights about the air quality and characterize the neighboring sub-areas of interest in terms
of their potential health implication and b) with a smoke dispersion module to obtain
informations regarding the dispersion of the smoke in the area. Additionally, data regarding
population characteristics and locations are necessary and are fetched after contacting the
SILVANUS Storage Abstraction Layer (SAL). Once the module gathers all the necessary inputs,
it estimates the safe areas and paths using a greedy reward-based algorithm adopted in
OpenRouteService. The results of the algorithm are then sent to the Command and Control
center and may be distributed to other interested actors, e.g., citizens and first response
teams.

7.3. SW implementation and results
To operate the evacuation route planning module, certain data inputs are essential, including
fire spread projections, burnt area information, firefighters' locations, smoke dispersion
details, plume height data, and population distribution data. Unfortunately, the majority of
these inputs are currently unavailable. As a result, our evaluation proceeds using synthetic
data that closely approximates realistic fire behavior. Specifically, for simulating smoke
dispersion, we've implemented a Gaussian plume model to estimate pollutant concentrations
in the atmosphere and accurately simulate smoke movement. The rest of this section is
organized as follows: we begin by introducing the smoke dispersion model, followed by an
analysis of the fundamental components of the evacuation path planning module and the
presentation of various evacuation scenarios based on different data inputs.

7.3.1. Smoke dispersion
Smoke from wildfires has the potential to cause various temporal and spatial effects. Land
managers are tasked with the challenge of reconciling concerns related to human health,
nuisance smoke, and transportation hazards with matters pertaining to wildlife management,
forest health and safety, and ecosystem restoration (Achtemeier et. Al, 1998).

Models designed to forecast smoke impacts of wildfires consist of several components. The
first component involves a comprehensive description of the emissions source, which should
include both pollutants and heat release. The second component requires the determination
of plume rise, which involves an assessment of the atmospheric stability and wind profile, as
well as the fire-source rate of heat release, to determine the vertical extent of the plume. The
third component, which partially overlaps with the plume rise element, entails the actual
movement of the smoke (namely, the transport and dispersion) by the ambient wind
(Goodrick et. Al2012).

Most smoke dispersion models estimate the concentration of pollutants downwind of a
wildfire source utilizing input data on the following (Good Practice Guide, 2004):

• rate of emission of pollutants

• features of the emissions source

• topographical characteristics of the local region

• meteorological conditions of the surrounding area

• ambient or background concentrations of pollutants.

A comprehensive depiction of the utilization of this data in a smoke dispersion model is
presented in Figure 114.

Figure 123: Smoke dispersion modeling process (Good Practice Guide, 2004)

The outcomes of dispersion modeling can furnish an approximation of impacted areas,
ambient concentrations, and guide the selection of protective measures suitable for
application in the occurrence of a burning event. These protective measures may encompass
the evacuation for citizens and first responders located in the downwind direction.

7.3.1.1. Gaussian-plume models - Theoretical Background
Gaussian-plume models are extensively implemented, well understood, and effortlessly
applicable, and have been recognized globally until recently, for smoke dispersion estimation.
The formula adopted is simple and describes the concentration field generated in three
dimensions by a point source under conditions of stationary meteorology and emission. It
must be noted that these models operate on certain assumptions:

• the dispersion of the plume follows a Gaussian distribution in both the horizontal and

vertical dimensions, with corresponding standard deviations, and

• complete reflection of the plume occurs at the surface of the Earth (i.e., no reaction

or deposition) (Zannetti et. Al, 1990), (Turner et. Al. 1970).

The general equation to estimate the steady state concentration of an air pollutant is given as
follows:

where:

C = mean concentration of a pollutant at a point (x,y,z) [μg/m3]

H = effective source height [m] - physical source height and plume rise

Q = uniform pollutant emission rate [mass/s]

σy = standard deviation of plume concentration distribution in the horizontal [m]

σz = standard deviation of plume concentration distribution in the vertical [m]

u = mean wind speed [m/s] - in downwind direction

Figure 115 and Figure 116 illustrate the aforementioned concepts.

Figure 124: Gaussian air pollutant dispersion plume and coordinate system (from

en.wikipedia.org)

Figure 125: Plume rise (from http://www-personal.umich.edu/~weberg/eff_stack_height.htm)

Values for σy and σz depend on the stability class of the atmosphere, which in turn can be
determined by assessing wind speed at a height of approximately 10 meters, and by examining
incoming solar radiation during the day, or cloud cover during the night. They can be
estimated at a certain downwind distance x as (Turner et. Al. 1970), (Gifford et. Al. 1961) ,
(Gifford et. Al, 1980):

where the constant values are given in Table 16.

Table 18: Values of the constants for the estimation of σy and σz

Stability
Class

k1 k2 k3 k4 k5

A 0.250 927 0.189 0.1020 -1.918

B 0.202 370 0.162 0.0962 -0.101

C 0.134 283 0.134 0.0722 0.102

D 0.0787 707 0.135 0.0475 0.465

E 0.0566 1,070 0.137 0.0335 0.624

F 0.0370 1,170 0.134 0.0220 0.700

Pausquill’s atmosphere stability categories (Pasquill, F. 1961) (A - Extremely unstable; B -
Moderately unstable; C - Slightly unstable; D - Neutral; E - Slightly stable; F - Moderately
stable) are presented in Table 17.

Table 19: Atmospheric Stability Classes

Surface
Wind

Speed (at
10 m)

[m/sec]

Day Night

Incoming Solar Radiation Thinly Overcast

Strong Moderate Slight ≥ 4/8 Cloud ≤ 3/8 Cloud

< 2 A A - B B

2 - 3 A - B B C E F

3 - 5 B B - C C D E

5 - 6 C C - D D D D

> 6 C D D D D

The curves of σy and σz as produced as a function of the downwind distance from the source,
x, are presented in Figure 117. The crucial aspect to consider is that, in unstable conditions,
the standard deviations increase rapidly in the downwind direction, whereas in stable
conditions, the standard deviations remain modest in the downwind direction.

Horizontal Dispersion Coefficient (σy) Vertical Dispersion Coefficient (σz)

Figure 126: Curves of σy and σz for stability classes as a function of distance from the source

(Varma, M. S. A. K. 2014).

Gaussian plume models operate under the assumption that smoke moves in a straight line
during steady-state, homogeneous conditions. Steady-state models are capable of calculating
concentrations for every hour by utilizing an emission rate as well as meteorological
conditions that remain consistent throughout the entire modeling domain. Consequently, the
models are able to simulate average concentrations on an hourly basis (Good practice, 2004).
However, regions with varying weather conditions may violate these assumptions and
decrease the reliability of the outcomes. Nonetheless, one benefit of plume models is that
they do not demand a comprehensive meteorological input and are highly advantageous
when there is a shortage of meteorological information available (Goodrick et. Al, 2012).

7.3.1.2. Implementation
A Gaussian plume model has been developed in Python to predict hourly smoke dispersion,
leveraging the educational material provided in (Connoly, 2023). This model allows to capture
the variation of effects caused by wind fluctuations and speed, vertical stability, and existence
of multiple fire sources on smoke behavior and ground level concentrations. This Gaussian
plume model requires the input of values related to the number, coordinates and effective
height of the fire sources, the pollutants mass in grams / second emitted by each source and
the meteorological conditions in the field, like the speed and direction of the current wind
blowing. The following are illustrative examples that illustrate the operation of the proposed
model.

Differing wind fluctuations

In the first set of experiments, the impact of assumptions regarding wind direction on the
spread of pollutants is demonstrated. Normally, wind speed and direction are derived from
observational data or a product of a forecast model. However, for the purposes of this set of
experiments, we generate a synthetic dataset using one of three methods:

• a constant wind direction (135o),

• a completely random wind direction, or

• a prevailing wind direction (135o) with some variability on either side

The wind speed is set to 10 m/s. It is also assumed that the effective height of the wildfire
source is 50 m and 40 g/s particulate matter PM10 are released. These scenarios are tested
for neutral vertical stability and the burning event takes place in northern Euboea. The
respective hourly outcomes are presented in Figure 118 . The colors correspond to European
Air Quality Index22 levels.

a) constant wind direction b) random wind direction c) prevailing wind direction

Figure 127: Differing wind fluctuations

Multiple wildfire sources

The effects of multiple wildfire sources on the ground level concentrations are then
investigated. In this case, the prevailing wind is adopted as a basis for study, where the
presence of two or three different sources exhibiting identical effective height and quantity
of pollutants released (i.e., H = 50m and Q = 40 g/s), is thoroughly examined. The rest of the
input values are kept as above. The effects that including two or three sources has on ground
level concentrations of pollutant (PM10) are shown in Figure 119.

a) two sources b) three sources

Figure 128: Multiple wildfire sources

Vertical stability

Finally, we want to investigate the effects of the vertical stability of the atmosphere on the
ground level concentrations of pollutants. In this set of experiments, a wildfire source is

22 https://airindex.eea.europa.eu/Map/AQI/Viewer/

adopted (H = 50m and Q = 40 g/s), and the vertical stability takes all possible values according
to Pausquill (i.e., A - F), under the same meteorological conditions. Figure 120 demonstrates
the outcomes of the proposed model.

A - Extremely unstable B - Moderately unstable C - Slightly unstable

D - Neutral E - Slightly stable F - Moderately stable

Figure 129: Vertical stability effects

7.3.2. Evacuation route planning
In this section, we outline the process of creating a strategy to safely relocate individuals from
hazardous zones to designated safety areas. This comprehensive planning process
encompasses the following key components: a) Risk Assessment: Evaluating potential hazards
and threats; b) Population Analysis: Assessing the demographic characteristics of the affected
population; c) Definition of Safe Areas: Identifying secure locations for evacuees; d) Route
Selection: Determining the most suitable evacuation routes; e) Simulation Testing:
Conducting simulated evacuation tests for evaluation.

7.3.2.1. Risk assessment - Module triggering
The organized preventive removal of citizens (evacuation) is an action that can be
implemented promptly in areas where a catastrophic event is anticipated. This measure is
taken to protect the lives and health of the citizens. The risk of staying within these vulnerable
areas outweighs the risk of relocating to a safe place. The command centers based on the
collected data from the appropriate repositories and modules concerning the fuel
characteristics and the topography of the affected area, the meteorological conditions, the
fire spread forecast, the ambient air quality and the smoke dispersion forecast assess the
wildfire event intensity and the subsequent wildfire hazard. The decision to formulate
evacuation plans is determined by the estimated levels of risk and hazard. When necessary,
the command centers trigger (by placing a new emergency message on the queue) the
corresponding module to design safe and appropriate evacuation routes Figure 121).

Figure 130: Evacuation Route Planning Module Triggering

7.3.2.2. Module overview
In this section the Evacuation Route Planning module's inputs, operation and outputs are
thoroughly demonstrated. A comprehensive description is presented in Figure 122.

Figure 131: Evacuation Route Planning Interactions

7.3.2.2.1. Module inputs
When an emergency message is produced, the evacuation route planning component is
activated, initiating a search within the SILVANUS Cloud to retrieve all the necessary inputs.
The following list depicts all the required inputs, along with their corresponding values, used
in our experimental evaluation (if an input is not currently available in the SAL we create
synthetic data).

3. Ambient Area Features

An accurate planning of evacuation routes requires the detailed description of the forms and
characteristics of the area where the wildfire phenomenon takes place. Usually, these

features are depicted in the form of maps. For demonstration purposes, we have chosen the
island of Euboea (SILVANUS pilot site) and collected various physical features such as roads
and buildings from openstreetmaps (OSM). Selecting an island as the primary input for
evaluating the evacuation planning component offers several distinct advantages since a)
Euboea provides a controlled and isolated environment, ideal for modeling and analyzing
evacuation scenarios without significant external interference, b) Euboea presents unique
challenges related to evacuation due to their geographical features, such as limited access
points and varying population densities, and c) Euboea has a unique escape route to the rest
of Greece, allowing us to study congestion phenomena when multiple residents need to
evacuate promptly. Implementation is performed in Python and the folium library is used to
create several types of Leaflet maps.

4. Smoke Dispersion and Fire Behaviour - Meteorology

In addition, it is vital to determine the hazards and threats to the lives and health of nearby
citizens and first responders as a result of wildfires. The risk posed to individuals arises from
the fact that their bodies are subjected to extreme heat caused by the burning of biomass, as
well as from the release of combustion derivatives that diffuse into the atmosphere. The
smoke produced consists of a variety of suspended particles. The composition of the mixture
is determined by the type of biomass that is burning. The health effects of breathing in these
particles vary according to their characteristics, the degree and duration of exposure, the state
of the surrounding air, the overall level of health of individuals, as well as how each person's
body reacts to them (Guidelines, 2013).

In order to estimate the fire and smoke behavior, the /evacuations/smoke-fire endpoint has
been developed. This endpoint implements a typical fire spread scenario and the subsequent
estimation of the smoke dispersion adopting the aforementioned Gaussian plume model and
taking into account the inputs concerning the required meteorological conditions (i.e.,
direction and speed of wind, and humidity level). When called, it receives the arguments and
executes the calculations. The result is then saved as a Features Collection of GeoJSON format
and the response with the JSON file is sent back to the caller. A demonstrative example is
presented in Figure 132.

{
 "features": [
 {
 "geometry":
 {
 "coordinates": [[
 [38.880183, 23.215972], [
38.880275, 23.216114], …]],
 "type": "Polygon"
 },
 "properties":
 {
 "color": "#50ccaa"
 },
 "type": "Feature"
 },
 {
 "geometry":
 {
 "coordinates": [[
 [38.88084, 23.217126], [
38.881173, 23.217617], …]],
 "type": "Polygon"
 },
 "properties":
 {
 "color": "#50ccaa"
 },
 "type": "Feature"
 }, …
],
 "type": "FeatureCollection"
}

A. Smoke.geojson B. Folium map

Figure 132: GeoJSON output example with corresponding map

In order to access this endpoint, the user must make a POST request, passing the needed
arguments to the body of the request, as shown in the cURL in Figure 133. The arguments that
the user needs to pass are shown in Table 20. There are some optional parameters, which
take specific values and set to a default value if none is set. stability takes values from the
interval 1 to 6, corresponding to how normal the atmosphere is. wind takes one of the values
“constant_wind”, “fluctuating_wind” and “prevailling_wind”. days takes any non-negative
integer

.

curl -X 'POST' \
 'http://silvanus.uth.gr/evacuations/smoke-fire' \
 -H 'accept: application/json' \
 -H 'Content-Type: application/x-www-form-urlencoded' \
 -d
'lat=38.892851059647484&lon=23.23213064855875&list_source_x=0.0&list_source_x=0.
0&list_source_y=0.0&list_source_y=2000.0&list_Q=40.0&list_Q=40.0&list_H=50.0&list_H
=50.0&ph_wind_speed=10.0&ph_wind_dir=135&rh=0.9&&stability=4&wind=prevailing_w
ind&days=1'

Figure 133: POST request to /evacuations/smoke-fire endpoint (2 sources)

Table 20: Parameters of /evacuations/smoke-fire endpoint

Parameter Name Type Description

lat float The latitude of the observation point.

lon float The longitude of the observation point.

list_source_x float array List of the x-coordinates of fire outbreak
points relative to the observation point
in meters.

list_source_y float array List of the y-coordinates of fire outbreak
points relative to the observation point
in meters.

list_Q float array List of masses emitted per unit time for
each fire outbreak in grammars per
second.

list_H float array List of effective source heights for each
fire outbreak in meters.

ph_wind_speed float The speed of the wind in meters per
second.

ph_wind_directions int The direction of the wind in degrees.

rh float The relative humidity of the atmosphere.

stability integer,
optional

The stability of the atmosphere. Default
value is 4.

wind string,
optional

The wind field. Default value is
“prevailing_wind”.

days integer,
optional

The number of the days for which the
model calculates.

5. Population
Smoke from a wildfire could potentially induce ocular and respiratory tract irritation, bouts of
coughing, bronchitis, as well as aggravate or precipitate asthma symptoms, alongside
instances of respiratory insufficiency, particularly marked by dyspnea. Furthermore, it can
potentially contribute to cardiac arrhythmias and, in severe scenarios, culminate in
cardiovascular incidents resulting in death in people with underlying diseases. Hence, in
situations where there is a perceived need to protect individuals from the effects of smoke
emitted by biomass burning, specifically those who are vulnerable, such as individuals with
respiratory problems or cardiovascular diseases, as well as the elderly, children, infants, and
pregnants, it is imperative for them to promptly relocate from the affected area. Individuals
are confronted with an additional hazard, namely the potentiality of thermal burns, resulting
from the body's direct exposure to flames or hot gasses. It is evident that attempting to move
away, while being exposed to elevated temperatures and noxious composition of the wildfire
products in an open area along its trajectory, reduces an individual’s likelihood of survival,
regardless of age and health state (Guidelines, 2023).

To provide a demonstration of the overall module operation, the examination of the
demographic composition of the towns and villages in the northern region of Euboea is
undertaken, with the information being derived from the most recent census carried out in
this area. It is necessary to point out that data could well be drawn from WorldPop23 project
repositories as well.

6. Safe Gathering Places - Refuge Destinations
Α crucial aspect of the evacuation route planning process is the identification of safe and
suitable places both for gathering individuals who are confronted with wildfire hazard and for
seeking refuge, finding temporary accommodations, and receiving administrative support. It
is imperative to ascertain, from the command center, the starting and ending points of the
alternative evacuation routes.

During the experiments, numerous combinations of these two distinct points from the
northern Euboea region are tested.

7.3.2.2.2. Module operation
The calculation of the evacuation routes is done using the OpenRouteServices API24.
OpenRouteServices offers a variety of routing services, like directions, isochrones, time-
distance matrices etc, in the form of endpoints. From these services, the directions endpoint
is used for the calculation of the evacuation routes. This service offers the capability to get the
optimal route from a given set of points as well as a list of optional parameters for the
surround. The set of points consists of two or elements: the initial point and one or more
points of destinations. The results are returned by default in a custom JSON format, but it can
also be set to either GeoJSON or GPX. Since the most flexible format was GeoJSON, we chose
it as the main format of returned files.

Figure 134 shows the response from a simple call to the endpoint. The initial point is Istiaia
and the destination point is Aidipsos. The field “coordinates” inside “geometry” contains all
the points of the linestring representing the route.

23 https://www.worldpop.org
24 https://openrouteservice.org/

https://www.worldpop.org/
https://openrouteservice.org/

{
 "type": "FeatureCollection",
 "metadata": {
 "attribution": "openrouteservice.org | OpenStreetMap contributors",
 "service": "routing",
 "timestamp": 1694606498382,
 "query": {
 "coordinates": [
 [
 23.1515895799512,
 38.952002738068195
],
 [
 23.043416098102462,
 38.878264801957656
]
],
 "profile": "driving-car",
 "format": "geojson"
 },
 "engine": {
 "version": "7.1.0",
 "build_date": "2023-07-09T01:31:50Z",
 "graph_date": "2023-09-03T10:10:37Z"
 }
 },
 "bbox": [
 23.039025,
 38.87848,
 23.151579,
 38.956633
],
 "features": [
 {
 "bbox": [
 23.039025,
 38.87848,
 23.151579,
 38.956633
],
 "type": "Feature",
 "properties": {
 "transfers": 0,
 "fare": 0,
 "segments": [
 {
 "distance": 18635.8,
 "duration": 1524.9,
 "steps": [
 {
 "distance": 38.6,
 "duration": 9.3,
 "type": 11,
 "instruction": "Head west on Δήμαρχος Ιωάννου Αντωνίου",
 "name": "Δήμαρχος Ιωάννου Αντωνίου",
 "way_points": [

 0,
 2
]
 },
 {
 "distance": 158.3,
 "duration": 35.6,
 "type": 1,
 "instruction": "Turn right",
 "name": "-",
 "way_points": [
 2,
 8
]
 }, …
]
 }
],
 "way_points": [
 0,
 380
],
 "summary": {
 "distance": 18635.8,
 "duration": 1524.9
 }
 },
 "geometry": {
 "coordinates": [
 [
 23.151579,
 38.95192
],
 [
 23.151424,
 38.951931
], …
],
 "type": "LineString"
 }
 }]
}

Figure 134: GeoJSON response from simple directions endpoint call.

The case above is a very simple call, with only the initial point and point of the destination.
This case does not consider any restriction that the user might face. More specifically, in the
case of a wildfire, it doesn’t consider the smoke and the fire, the profile of the vehicle or the
preferred route (fastest or shorter) and so on. In order to use this information, the directions
endpoint provides a list of customized parameters.

Figure 135 shows the response of a more complex call. The initial point and the point of the
destination are the same as before, but additional parameters have also been included: the
profile has been set to driving car, the preferred route is set to shortest and the instructions
have been disabled. The most important added parameter is an object to be avoided.

Specifically, a list of points representing the obstacle is added as a parameter in the endpoint
call. This list shall be taken into account by the route’s estimation, producing a route that
avoids that obstacle.

{
 "type": "FeatureCollection",
 "metadata": {
 "attribution": "openrouteservice.org | OpenStreetMap contributors",
 "service": "routing",
 "timestamp": 1694611018512,
 "query": {
 "coordinates": [
 [
 23.1515895799512,
 38.952002738068195
],
 [
 23.043416098102462,
 38.878264801957656
]
],
 "profile": "driving-car",
 "format": "geojson"
 "preference": "shortest",
 "options": {
 "avoid_polygons": {
 "coordinates": [
 [
 [
 23.04273091613799,
 38.93712480960088
],
 [
 23.096165358787243,
 38.94679002083246
],
 …
]
],
 "type": "Polygon"
 }
 }
 },
 "engine": {
 "version": "7.1.0",
 "build_date": "2023-07-09T01:31:50Z",
 "graph_date": "2023-09-03T10:10:37Z"
 }
 },
 "bbox": [
 23.04301,
 38.859552,
 23.152158,
 38.952458
],
 "features": [

 {
 "bbox": [
 23.04301,
 38.859552,
 23.152158,
 38.952458
],
 "type": "Feature",
 "properties": {
 "transfers": 0,
 "fare": 0,
 "way_points": [
 0,
 1115
],
 "summary": {
 "distance": 27575.2,
 "duration": 4116.1
 }
 },
 "geometry": {
 "coordinates": [
 [
 23.151579,
 38.95192
],
 [
 23.151424,
 38.951931
], …
],
 "type": "LineString"
 }
 }
]
}

Figure 135: GeoJSON response from customized parameters.

In general, the second showcase of the destination's endpoint call is the approach that is
taken, due to better performance in calculations and ease of use. It expands the route
calculation, providing the capability of obstacle avoidance, a very important feature that is
needed, in order for the population to evacuate safely, without facing the fire or the smoke.

When calling the endpoint like that, it is important to clarify what the obstacles are. The
obstacles that need to be avoided are the fire and the smoke. When the smoke or fire cover
the route, the passage of vehicles becomes impossible and someone who is within the fire
zone is in immense danger. Their representation is done using polygons. The polygons consist
of a list of points representing its corners, with each point having specific longitude and
latitude values. These polygons are passed as parameters in the endpoint call, along with the
other OpenRouteServices parameters. For example, in Figure 136, the field “coordinates” of
the field “avoid_polygons” contains a list of points that represent a simple polygon that blocks
the shortest route between Istaia and Aidipsos.

Besides these two endpoints, another two endpoints have been developed. The first one is
responsible for returning information about a city. Specifically, its purpose is to return a
GeoJSON format file with multiple information about the requested city. Currently, the file
contains information about city’s perimeter, center and population. The access to this
endpoint is done, using a GET request to /evacuations/cities?city=<city_name>. On a
successful request, it returns the proper status code along with the GeoJSON file. If it fails, an
error message is returned to the caller, informing him about their possible mistake. Figure 136
demonstrates a cURL call to this endpoint.

curl -X 'GET'
 'http://silvanus.uth.gr/evacuations/cities?city=Taxiarhis'

 -H 'accept: application/json'

Figure 136: cURL call to /evacuations/cities endpoint

The second endpoint is responsible for acquiring the route between two cities. This endpoint
returns a GeoJSON file that contains information about the route between two cities. We
assume that the direction of the route doesn’t affect the route itself, so going from one city
to another is the same as going in reverse. This means that the order of the cities doesn’t
change the final route. The access to this endpoint is done, using a GET request to
/evacuations/routes?from=<initial_city>&destination=< destinated_city>. These two
parameters are used to find an already estimated route between them that is located within
the server. If the query was successful, the endpoint returns the proper status code with the
GeoJSON file with the route. If it fails, it returns an error message, informing the caller about
the error. Figure 137 represents a call to this endpoint.

curl -X 'GET'
 'http://silvanus.uth.gr/evacuations/routes?from=Agdines&destination=Achladhi'
 -H 'accept: application/json'

Figure 137: cURL call to /evacuations/routes endpoint

The operation of the model is divided into four phases. In the first phase the cities within the
risk area are retrieved from the system. The second phase records all the available routes for
all pairs of the cities from the previous phase. The third phase estimates the fire spread and
smoke dispersion in the affected area of interest. The fourth phase estimates all the safe
routes for evacuating the cities in danger.

The first phase starts by feeding the /evacuations/cities endpoint with a list of city names. This
action results in a list of GeoJSON files each of which represents a specific city. For each city
pair the /evacuation/routes endpoint is called and returns information for the route in
GeoJSON form. The third phase estimates the progression of the fire and the smoke. It is
independent from the previous phases, which can be useful if only the dispersion is needed.
For that phase, the parameters discussed in 7.2.2.1 must be used. The Gaussian plume model,
as described in 7.2.1, computes the fire spread and smoke dispersion. This phase uses the
/evacuations/smoke-fire endpoint in order to calculate a GeoJSON file of the model. The
fourth phase produces the final output of the component. It produces a list with routes that
are characterized as safe or unsafe. Using the fire dispersion model from phase three, it
forecasts where the fire and smoke are directed, and using the routes from phase two, it

evaluates the safety of each route. The latter evaluation is accomplished using the
/evacuations/evacuation endpoint in GeoJSON form.

7.3.2.2.3. Module outputs
The system provides three outputs. The first output consists of a set of evacuation
recommendations for a group of cities, along with suggested evacuation times (timestamps).
The remaining two outputs are two lists, each containing sets of safe and unsafe paths in the
GeoJSON format. More details are presented in section 7.3.2.3.

7.3.2.3. Simulation testing

7.3.2.3.1. Experimental evaluation
In total, we present 2 experiments. In the first experiment, we consider the following
parameters: a) Ignition point at location 38.925252233969054, 23.12973430941135, b) Mass
emitted per unit time is 40.0 g/s, c) Source height is 50.0m, d) Wind speed is 10 m/s and e)
East Wind. Additionally, we assume that each iteration step is equivalent to one hour, and we
forecast the fire behavior for 3 hours from 2023-11-15 09:30:00 to 2023-11-15 12:30:00.

Figure 138a displays the 22 cities utilized in our experiments, while Figure 138b illustrates all
the available routes between every pair of cities prior to the fire incident.

a. Cities b. Routes

Figure 138: Cities and available routes in Northern Euboea

Figure 139 illustrates the progression of the fire incident and the dispersion of smoke within
one hour (Exp.1). The results of the evacuation route planning component for a three-hour
simulation execution time are presented in Figure 140, where green and red routes denote
safe and unsafe paths, respectively. Additionally, the component identifies the necessity for
emergency evacuation in a particular city. This information is generated when there is no safe
route available between two cities. The output of the component is as follows:

• Evacuate AgiosGeorgiosIstiaias time: 2023-11-15 09:30:00

• Evacuate Kastaniotissa time: 2023-11-15 09:30:00

• Evacuate Kamaria time: 2023-11-15 10:30:00

• Evacuate Kamatriades time: 2023-11-15 10:30:00

• Evacuate Istiaia time: 2023-11-15 11:30:00

• Evacuate Avgaria time: 2023-11-15 11:30:00

• Evacuate Monokaria time: 2023-11-15 11:30:00

• Evacuate KatoMonokaria time: 2023-11-15 11:30:00

Figure 139: Fire spread and smoke dispersion progression (Exp.1)

Figure 140: Routes characterization (Exp.1)

In the next experiment (Exp.2), we create a severe fire incident and add four more cites as
depicted in Figure 141a while the wind direction is changed in an opposite direction - west
wind (Figure 141b). The component recommends immediate evacuation for the cities of Agios
Georgios and Lichada in the first simulation step, as there is no feasible route to bypass the
fire incident. Residents of the remaining two cities can readily evacuate, provided the wind
direction changes, by utilizing the green routes illustrated in Figure 142.

a. Cities b. Fire spread and smoke dispersion

Figure 141: Exp.2 setting

Figure 142: Routes characterization(Exp.2)

7.3.2.3.2. Output format
Figure 143 displays a sample GeoJSON file for the Gialtra - NeaSinasos route (Figure 143a).
This route exhibits numerous similarities with the route obtained from Google Maps (Figure
143b), with both routes having the same average duration and distance.

a. OSM b. Google Maps

Figure 143: Routes comparison

{
 "type": "FeatureCollection",
 "features": [
 {
 "bbox": [
 22.947754,
 38.863502,
 23.16447,
 38.968077
],
 "geometry": {
 "coordinates":[][
 22.97426,
 38.863502
],
 [
 22.974283,
 38.863558
],
 [...]
 "type": "LineString"
 },
 "properties": {
 "fare": 0,
 "summary": {
 "distance": 30916.6,
 "duration": 3838.2
 },
 "transfers": 0,
 "way_points": [
 0,
 735
],
 "start": "Gialtra",
 "end": "NeaSinasos",
 "characterization": "safe",
 "from": "2023-11-15 09:30:00",
 "to": "2023-11-15 12:30:00
 },
 "type": "Feature"
 }
]
}

Figure 144: GeoJSON sample of a route

The above GeoJSON file represents an evacuation route from Gialtra to NeaSinasos. The route
is characterized as "safe" and is designed for use during the specified time period from "2023-
11-15 09:30:00" to "2023-11-15 12:30:00". It includes geographic coordinates that define a
LineString geometry, detailing the path of the route. The route has a total distance of 30,916.6
meters and an estimated duration of 3,838.2 seconds. It involves no transfers, making it a
direct route. The "fare" is listed as 0, and the "way_points" indicate the start and end points
of the route within the coordinate sequence.

7.4. Component integration
Regarding component integration, pilots possess the ability to seamlessly integrate our
system into their operations. This accomplishment is attained through the initiation of HTTP
access by means of our RESTful APIs. Elaborate information regarding the API can be found in
the preceding section, and information can also be obtained through the documentation
available in the provided link: http://silvanus.uth.gr/documentation. The results of the
evacuation route planning can be easily stored in the Storage Abstraction Layer (SAL) for the
Greek pilot case. For testing in other pilots, the module can be seamlessly integrated after a
preprocessing step, which involves recording cities characteristics and generating the initial
available routes before a fire incident occurs.

7.5. Plans for future extensions
In the first place of our future agenda is to conduct practical testing of the showcased
evacuation planning component. The testing will be conducted in collaboration with a local
fire department, which will orchestrate a simulated fire incident. Also, we will connect the
module to the SILVANUS message queue on one or more appropriate brokers and test its
performance. In addition, it is anticipated that the module's functionality will be extended to
pay specific attention to the management of vulnerable groups (i.e., individuals with
respiratory problems or cardiovascular diseases, elderly, children, pregnants, etc.) and load
balancing among alternative safe routes, while data will be drawn from WorldPop. Finally, the
possibility of integrating data with the SILVANUS Storage Abstraction Layer in the form of json
files will be investigated.

http://silvanus.uth.gr/http
http://silvanus.uth.gr/documentation

8. Conclusions

This deliverable includes an extensive report on the software components that have been
developed as part of the SILVANUS platform that contribute to the toolkit development of a
decision support system (DSS) to improve situational awareness. The SILVANUS DSS tools aim
to assist decision makers to make informed decisions reacting faster to wildfires, optimizing
response coordination and allocation of resources reducing wildfire impact first of all on
human health and secondly on valuable infrastructures. Decision support is based on
automated data gathering and knowledge extraction and management based on intelligent
algorithms. The SILVANUS platform facilitates the gathering of such valuable data either form
sensors integrated on the system platform or external sources. Communication and
interaction of all components is facilitated by the message broker and the Storage Abstraction
Layer (SAL), which are part of the SILVANUS platform middleware.

Systematic data processing and semantic annotation for extracting and managing high-level
knowledge related to forest management and wildfire incidents is achieved by the Knowledge
Base Information Fusion (KBIF) presented in Section 2. KBIF facilitates extraction of knowledge
based on fusion through the semantic representation and filtering of data gather from in-situ
sensors, combined with data retrieved from external sources or generated by the SILVANUS
platform components at a second level leading to systematic data classification and detection
of relationships among the generated data that can lead to improved situational awareness.
Stochastic modelling of such data, as presented in Section 3, can lead to improved
preparedness and analysis of GIS related data that can present in a user-friendly manner
important area characteristics that can be exploited for reacting faster and more efficiently to
protect human lives and the environment. The detection of events that take place in areas
under monitoring and inspection apart from in-situ sensors can also be facilitated via the
analysis of human descriptions made available over social media that generate a lot of data
that can be exploited towards this end. Machine Learning based approaches to achieve the
above objective in a multilingual context have been presented in Section 5. Upon detection of
a fire event response coordination must focus on two main areas: 1) early and efficient
distribution of resources to suppress fires and 2) protection of human lives by combating the
fire and evacuating citizens from dangerous areas. Section 3 presents algorithms to solve a
number of multiparametric problems that are related to the resource distribution under
several constraints that need to be met simultaneously. Such multi-objective optimization
problems are hard to be solved by humans, especially under the pressure of a fire-spreading
events and the solution presented in Section 3 assist in this direction. Finally, protection of
human lives requires the identification of potentially dangerous for humans environmental
conditions and in that case evacuation of citizens in a safe way. Thus, in Section 5 we
presented the Health Impact Component that detects potentially poisonous gases that can be
harmful to fire-fighters in the field and citizens located in an area and in Section 6 a component
that can calculate safe routes on a map that can be used securely as evacuation paths avoiding
passing by areas that have been identified as dangerous for human life (either to fire or low
air quality conditions).

The above tools have been developed and integrated in the SILVANUS platform. Their
operation has been evaluated in different scenarios as presented in detail in this deliverable.
The component implementation details have been described, accompanied by demonstration
of the operation and the results obtained when using the tools. The plans for future extensions
are finally described, defining the next development steps that will be reported in the
following planned deliverables of WP5.

9. References

Achtemeier GL, Jackson W, Hawkins B, Wade D, McMahon C (1998) The smoke dilemma:
head-on collision! In ‘Transactions of the Sixty-Third North American Wildlife and
Natural Resources Conference’, 20–24 March 1998, Orlando, FL. (Ed. KG Wadsworth)
pp. 415–421. (Wildlife Management Institute: Washington DC)

Agranat V. and Perminov V., “Mathematical modeling of wildland fire initiation and spread,”
Environmental Modelling and Software, vol. 125, no. January, p. 104640, 2020, doi:
10.1016/j.envsoft.2020.104640.

Allaire F., Mallet V., and Filippi J. B., “Emulation of wildland fire spread simulation using deep
learning,” Neural Networks, vol. 141, pp. 184–198, 2021, doi:
10.1016/j.neunet.2021.04.006.

Baines P. G., “Physical mechanisms for the propagation of surface fires,” Math Comput Model,
vol. 13, no. 12, pp. 83–94, 1990, doi: 10.1016/0895-7177(90)90102-S.

Bao W., et. al., “Estimation of fuel load using remote sensing data in Hulunbuir Grassland,”
Natural Hazards Research, vol. 2, no. 4, pp. 375–383, Dec. 2022, doi:
10.1016/J.NHRES.2022.11.004.

Chen W., et. al., “Wildfire risk assessment of transmission-line corridors based on naïve bayes
network and remote sensing data,” Sensors (Switzerland), vol. 21, no. 2, pp. 1–16,
2021, doi: 10.3390/s21020634.

Connoly, P. (2023, August 30). Gaussian Plume Model. University of Manchester.
https://personalpages.manchester.ac.uk/staff/paul.connolly/teaching/practicals/ga
ussian_plume_modelling.html

Depicker A., De Baets B., and Marcel Baetens J., “Wildfire ignition probability in Belgium,”
Natural Hazards and Earth System Sciences, vol. 20, no. 2, pp. 363–376, 2020, doi:
10.5194/nhess-20-363-2020.

Dhall A., Dhasade A., Nalwade A., Mohan M. R., and Kulkarni V., “A survey on systematic
approaches in managing forest fires,” Applied Geography, vol. 121, no. November
2018, p. 102266, 2020, doi: 10.1016/j.apgeog.2020.102266.

General Secretariat of Civil Protection (2023). Guidelines for the organized preventive
evacuation of citizens for reasons of protection from developing or imminent disaster
due to forest fires and instructions for the drafting of special plans in the context of
the implementation of art. 23 par. 4 of Law 4662/2020. (available in greek)

Gifford, F. A. (1961). Use of routine meteorological observations for estimating atmospheric
dispersion. Nucl. Safety, 2, 47-51.

Glasa J. and Halada L., “On elliptical model for forest fire spread modeling and simulation,”
Math Comput Simul, vol. 78, no. 1, pp. 76–88, 2008, doi:
10.1016/j.matcom.2007.06.001.

Goodrick, S. L., Achtemeier, G. L., Larkin, N. K., Liu, Y., & Strand, T. M. (2012). Modelling smoke
transport from wildland fires: a review. International Journal of Wildland Fire, 22(1),
83-94.

Green, A. E. S., Singhal, R. P., & Venkateswar, R. (1980). Analytic extensions of the Gaussian
plume model. Journal of the Air Pollution Control Association, 30(7), 773-776.

Hernández L. Encinas, Hoya White S., Martín del Rey A., and Rodríguez Sánchez G., “Modelling
forest fire spread using hexagonal cellular automata,” Appl Math Model, vol. 31, no.
6, pp. 1213–1227, 2007, doi: 10.1016/j.apm.2006.04.001.

Kalabokidis K. et al., “Virtual Fire: A web-based GIS platform for forest fire control,” Ecol
Inform, vol. 16, pp. 62–69, 2013, doi: 10.1016/j.ecoinf.2013.04.007.

Kolanek A., Szymanowski M., and Raczyk A., “Human activity affects forest fires: The impact
of anthropogenic factors on the density of forest fires in Poland,” Forests, vol. 12, no.
6, p. 728, Jun. 2021, doi: 10.3390/F12060728/S1.

Landau. D. and Binder. K., A guide to Monte-Carlo Simulation in Statistical Physics-3rd ed.
2009.

Ma W., et. Al. , “Identifying Forest Fire Driving Factors and Related Impacts in China Using
Random Forest Algorithm,” Forests 2020, Vol. 11, Page 507, vol. 11, no. 5, p. 507, May
2020, doi: 10.3390/F11050507.

Marlon J. R. et al., “Climate and human influences on global biomass burning over the past
two millennia,” Nature Geoscience 2008 1:10, vol. 1, no. 10, pp. 697–702, Sep. 2008,
doi: 10.1038/ngeo313.

Ministry for the Environment Manatū Mō Te Taiao, Good Practice Guide for Atmospheric
Dispersion Modelling, www.mfe.govt.nz, ISBN: 0-478-18941-9 ME:522,Wellington,
New Zealand, 2004.

Navalho I., Alegria C., Quinta-Nova L., and Fernandez P., “Integrated planning for landscape
diversity enhancement, fire hazard mitigation and forest production regulation: A
case study in central Portugal,” Land use policy, vol. 61, pp. 398–412, 2017, doi:
10.1016/j.landusepol.2016.11.035.

Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteoro. Mag.,
90, 20-49.

Reiter D., The Monte Carlo Method, an Introduction, Computational Many Particle Physics,
Springer 2008.

Sevinc V., Kucuk O., and Goltas M., “A Bayesian network model for prediction and analysis of
possible forest fire causes,” For Ecol Manage, vol. 457, no. October 2019, p. 117723,
2020, doi: 10.1016/j.foreco.2019.117723.

Sivrikaya F. and Küçük Ö., “Modeling forest fire risk based on GIS-based analytical hierarchy
process and statistical analysis in Mediterranean region,” Ecol Inform, vol. 68, no.
September 2021, 2022, doi: 10.1016/j.ecoinf.2021.101537.

Storey M. A., Bedward M., Price O. F., Bradstock R. A., and Sharples J. J., “Derivation of a
Bayesian fire spread model using large-scale wildfire observations,” Environmental
Modelling and Software, vol. 144, no. July, p. 105127, 2021, doi:
10.1016/j.envsoft.2021.105127.

Tatem, A. WorldPop, open data for spatial demography. Sci Data 4, 170004 (2017).
https://doi.org/10.1038/sdata.2017.4.

Tien D., Van Le H., and Hoang N., “Ecological Informatics GIS-based spatial prediction of
tropical forest fi re danger using a new hybrid machine learning method,” vol. 48, no.
April, pp. 104–116, 2018.

Turner, D. B. (1970). Workbook on atmospheric dispersion estimates report Ap-26. Research
Triangle Park, NC: US EPA.

Varma, M. S. A. K. (2014). Mathematical Modeling of Air Pollution in a Thermal Power Project
(Doctoral dissertation, Sri Venkateswara University Tirupati).

W. Jiang et al., “Modelling of wildland-urban interface fire spread with the heterogeneous
cellular automata model,” Environmental Modelling and Software, vol. 135, p.
104895, 2021, doi: 10.1016/j.envsoft.2020.104895.

Yengoh G. T., et al., “Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land
Degradation at Multiple Scales,” 2016, doi: 10.1007/978-3-319-24112-8.

Yonezawa C., “Maximum likelihood classification combined with spectral angle mapper
algorithm for high resolution satellite imagery,”
http://dx.doi.org/10.1080/01431160701373713, vol. 28, no. 16, pp. 3729–3737,
2007, doi: 10.1080/01431160701373713.

You W. et al., “Geographical information system-based forest fire risk assessment integrating
national forest inventory data and analysis of its spatiotemporal variability,” Ecol
Indic, vol. 77, pp. 176–184, 2017, doi: 10.1016/j.ecolind.2017.01.042.

Zannetti, P. (Ed.). (1990). Air pollution modeling: theories, computational methods and
available software. Springer Science & Business Media.

Zheng Z., Huang W., Li S., and Y. Zeng, “Forest fire spread simulating model using cellular
automaton with extreme learning machine,” Ecol Modell, vol. 348, pp. 33–43, 2017,
doi: 10.1016/j.ecolmodel.2016.12.022.

Zhou G. et al., “A BUFFER ANALYSIS BASED ON CO-LOCATION ALGORITHM,” The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. XLII–3, no. 3, pp. 2487–2490, May 2018, doi: 10.5194/ISPRS-ARCHIVES-XLII-3-
2487-2018.

	Table of Contents
	Table of Figures
	List of Acronyms
	Executive Summary
	1. Introduction
	2. Information fusion through the SILVANUS Knowledge Base
	2.1. Concept of operation
	2.2. Software implementation and results
	2.2.1. Semantic Data Integration
	2.2.2. Application Scenario
	2.2.3. Rules design and implementation

	2.3. Component integration
	2.4. Plans for future extensions

	3. Data fusion using Bayesian models and Monte-Carlo simulations
	3.1. Concept of operation
	3.1.1. Data Acquisition and Processing Method
	3.1.1.1. Sources and acquisition method
	3.1.1.2. Processing data into map of 14 variables

	3.1.2. Concept and Mathematical Modelling: Fuzzy Logic, Montecarlo and Bayes Method
	3.1.2.1. Fuzzy Logic
	3.1.2.2. Basic Properties of Fuzzy Sets
	3.1.2.3. Basic Operations on Fuzzy Sets
	3.1.2.4. Montecarlo Method
	3.1.2.5. Bayesian Method
	3.1.2.1. Case example

	3.2. Software implementation and results
	3.2.1. Data entry
	3.2.2. Initialization and application execution

	3.3. Component integration
	3.4. Data Fusion Future Plan

	4. Resource allocation of response teams
	4.1. Concept of operation
	4.1.1. Data Structures

	4.2. Software implementation and results
	4.2.1. Population based geographical distribution of impact risk estimation
	4.2.2. Multi-objective optimization based Resource Allocation (MORA)
	4.2.2.1. Model Assumptions and Data Sources
	4.2.2.2. Model formulation
	4.2.2.3. Model validation and demonstration

	4.3. Component integration
	4.4. Plans for future extensions

	5. Stakeholder notification decision on fire incidents using multilingual textual framework
	5.1. Concept of operation
	5.2. Software implementation and results
	5.2.1. Datasets
	5.2.2. Training Model
	5.2.3. Implementation Model

	5.3. Component integration
	5.4. Plans for future extensions

	6. Health Impact Component
	6.1. Concept of operation
	6.2. System implementation and results
	6.2.1. Air Quality Monitoring System
	6.2.1.1. Air Pollutants
	6.2.1.2. Sensors – Equiped by people
	6.2.1.2.1. Gas detection sensors
	6.2.1.2.2. Particles detection sensors

	6.2.2. Raspberry-Pi
	6.2.3. Sensors configuration
	6.2.4. Raspberry Pi implementation
	6.2.5. Complete air quality monitoring system
	6.2.5.1. Sensors connected to the Raspberry Pi
	6.2.5.2. Additional sensors and materials
	6.2.5.3. RESTful API
	6.2.5.3.1. RESTful API overview
	6.2.5.3.2. Deployed VM
	6.2.5.3.3. RESTful API endpoints

	6.2.5.4. Data visualization

	6.3. Sensors – Attached to vehicles or ground
	6.3.1. Smart Spot
	6.3.2. 2. Smart Spot configuration
	6.3.3. Smart Spot technical dashboard
	6.3.4. Smart Spot MQTT Broker

	6.4. Component integration
	6.5. Plans for future extensions

	7. Evacuation route planning
	7.1. Concept of operation
	7.2. Software implementation and results
	7.2.1. Smoke dispersion
	7.2.1.1. Gaussian-plume models - Theoretical Background
	7.2.1.2. Implementation

	7.2.2. Evacuation route planning
	7.2.2.1. Risk assessment - Module triggering
	7.2.2.2. Module overview
	7.2.2.2.1. Module inputs

	7.3. SW implementation and results
	7.3.1. Smoke dispersion
	7.3.1.1. Gaussian-plume models - Theoretical Background
	7.3.1.2. Implementation

	7.3.2. Evacuation route planning
	7.3.2.1. Risk assessment - Module triggering
	7.3.2.2. Module overview
	7.3.2.2.1. Module inputs
	7.3.2.2.2. Module operation
	7.3.2.2.3. Module outputs

	7.3.2.3. Simulation testing
	7.3.2.3.1. Experimental evaluation
	7.3.2.3.2. Output format

	7.4. Component integration
	7.5. Plans for future extensions

	8. Conclusions
	9. References

