
SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 1 | 65

D5.1 - Demonstration of big-data framework for situation
awareness on fire danger index

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 101037247

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 2 | 65

Project Acronym SILVANUS

Grant Agreement number 101037247 (H2020-LC-GD-2020-3)

Project Full Title Integrated Technological and Information Platform for
Wildfire Management

Funding Scheme IA – Innovation action

DELIVERABLE INFORMATION

Deliverable Leader: CMCC

Lead Author(s) Marco Mancini

Reviewers

Deliverable Number: D5.1

Deliverable Name: Demonstration of big-data framework for situation awareness
on fire danger index

Dissemination level: Public
Type of Document: Demonstrator
Contractual date of delivery: 30/06/2023 (M21)
Date of submission: 01/08/2023
Deliverable Leader: CMCC
Status: Final
Version number: 0.5

WPLeader/ TaskLeader: DELL/DELL

Keywords Big Data Analytics Framework

Abstract The deliverable will showcase the technical integration of big-
data framework elements for the development of situational
awareness on the threat of forest fire.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 3 | 65

Disclaimer

All information in this document is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. For the avoidance of all
doubts, the European Commission has no liability in respect of this document, which is merely
representing the authors ‘view.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 4 | 65

Document History
Version Date Contributor(s) Description
V0.1 26.04.2023 Marco Mancini (CMCC) Proposal of ToC
V0.2 11.05.2023 Jose Ramon Martinez (ATOS),

Maria Maslioukova (CTL), Ciro
Caterino (EAI), Mustafa AlBado
(DELL)

Individual section
contribution

V0.3 23.05.2023 Aris Bonanos (EXUS), Nohora
Sanchez (VTG)

Section contribution and
initial editorial review

V0.4 28.06.2023 Geordios Diles (EXUS), Mustafa
AlBado (DELL), Oikonomou

Panagiotis (UTH), Georgia
Christodoulou (CTL), Nohora
Sanchez (VTG)

Revision of sections, including
executive summary and
introduction, and conclusion
and references.

V0.5 30.06.2023 Marco Mancini (CMCC) Final review of the
deliverable and released for
internal review

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 5 | 65

List of Contributors

Partner Author(s)

CMCC Marco Mancini

CTL
Georgia Christodoulou, Konstantinos Avgerinakis, Maria I.
Maslioukova

EXUS Aris Bonanos, George Diles

DELL Mustafa Al-Bado, Matthew Keating, Deirbhile Healy

UTH Oikonomou Panagiotis

ATOS Jose-Ramon Martinez-Salio

VTG Nohora Sanchez, Tomas Piatrik, Krishna Chandramouli

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 6 | 65

List of beneficiaries

No Partner Name Short name Country

1 UNIVERSITA TELEMATICA PEGASO PEGASO Italy

2 ZANASI ALESSANDRO SRL Z&P Italy

3 NETCOMPANY-INTRASOFT SA INTRA Luxembourg

4 THALES TRT France

5 FINCONS SPA FINC Italy

6 ATOS IT SOLUTIONS AND SERVICES IBERIA SL ATOS IT Spain

6.1 ATOS SPAIN SA ATOS SA Spain

7 EMC INFORMATION SYSTEMS INTERNATIONAL DELL Ireland

8 SOFTWARE IMAGINATION & VISION SRL SIMAVI Romania

9 CNET CENTRE FOR NEW ENERGY TECHNOLOGIES
SA EDP Portugal

10 ADP VALOR SERVICOS AMBIENTAIS SA ADP Portugal

11 TERRAPRIMA - SERVICOS AMBIENTAIS SOCIEDADE
UNIPESSOAL LDA TP Portugal

12 3MON, s. r. o. 3MON Slovakia

13 CATALINK LIMITED CTL Cyprus

14 SYNTHESIS CENTER FOR RESEARCH AND
EDUCATION LIMITED SYNC Cyprus

15 EXPERT SYSTEM SPA EAI Italy

16 ITTI SP ZOO ITTI Poland

17 Venaka Treleaf GbR VTG Germany

18 MASSIVE DYNAMIC SWEDEN AB MDS Sweden

19 FONDAZIONE CENTRO EURO-MEDITERRANEOSUI
CAMBIAMENTI CLIMATICI CMCC F Italy

20 EXUS SOFTWARE MONOPROSOPI ETAIRIA
PERIORISMENIS EVTHINIS EXUS Greece

21 RINIGARD DOO ZA USLUGE RINI Croatia

22 Micro Digital d.o.o. MD Croatia

23 POLITECHNIKA WARSZAWSKA WUT Poland

24 HOEGSKOLAN I BORAS HB Sweden

25 GEOPONIKO PANEPISTIMION ATHINON AUA Greece

26 ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS
ANAPTYXIS CERTH Greece

27 PANEPISTIMIO THESSALIAS UTH Greece

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 7 | 65

No Partner Name Short name Country

28
ASSOCIACAO DO INSTITUTO SUPERIOR TECNICO
PARA A INVESTIGACAO E
DESENVOLVIMENTO

IST Portugal

29 VELEUCILISTE VELIKA GORICA UASVG Croatia

30 USTAV INFORMATIKY, SLOVENSKA AKADEMIA
VIED UISAV Slovakia

31 POMPIERS DE L'URGENCE INTERNATIONALE PUI France

32 THE MAIN SCHOOL OF FIRE SERVICE SGPS Poland

33 ASSET - Agenzia regionale Strategica per lo
Sviluppo Ecosostenibile del Territorio ASSET Italy

34 LETS ITALIA srls LETS Italy

35 Parco Naturale Regionale di Tepilora PNRT Italy

36 FUNDATIA PENTRU SMURD SMURD Romania

37 Romanian Forestry Association - ASFOR ASFOR Romania

38 KENTRO MELETON ASFALEIAS KEMEA Greece

39 ELLINIKI OMADA DIASOSIS SOMATEIO HRT Greece

40 ARISTOTELIO PANEPISTIMIO THESSALONIKIS AHEPA Greece

41 Ospedale Israelitico OIR Italy

42 PERIFEREIA STEREAS ELLADAS PSTE Greece

43 HASICSKY ZACHRANNY SBOR
MORAVSKOSLEZSKEHO KRAJE FRB MSR Czechia

44 Hrvatska vatrogasna zajednica HVZ Croatia

45 TECHNICKA UNIVERZITA VO ZVOLENE TUZVO Slovakia

46 Obcianske zdruzenie Plamen Badin PLAMEN Slovakia

47 Yayasan AMIKOM Yogyakarta AMIKOM Indonesia

48 COMMONWEALTH SCIENTIFIC AND INDUSTRIAL
RESEARCH ORGANISATION CSIRO Australia

50 FUNDACAO COORDENACAO DE PROJETOS
PESQUISAS E ESTUDOS TECNOLOGICOS COPPETEC COPPETEC Brazil

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 8 | 65

TABLE OF CONTENTS

TABLE OF CONTENTS ... 8

LIST OF FIGURES ... 10

LIST OF TABLES ... 11

LIST OF ACRONYMS ... 12

EXECUTIVE SUMMARY ... 13

1. Introduction .. 14

2. SILVANUS Big Data Framework .. 15

2.1. Data sources integration ... 16

2.2. Storage Abstraction Layer ... 18
2.2.1. Object store .. 18
2.2.2. Data and metadata ingestion ... 19
2.2.3. Data retrieval .. 20

2.3. ML lifecycle management ... 24
2.3.1. Introduction: what ML lifecycle ... 24
2.3.2. Principal ML lifecycle management frameworks ... 25
2.3.3. Kubeflow cloud environment ... 28

2.4. System cloud-native readiness .. 31

3. Data-driven approaches for fire detection ... 31

3.1. ML Approaches ... 31
3.1.1. Fire and smoke detection using Deep-learning .. 31
3.1.2. Fire and smoke detection using Statistical machine learning 35

4. Data-driven approaches for fire spread ... 40

4.1. ML Approaches ... 40

4.2. ML Training and Validation ... 41

4.3. ML Evaluation and Results .. 42

5.1 ML Approaches ... 42

5. Data-driven approaches for fire danger risk prediction ... 45

5.1. ML Approaches ... 45

5.2. ML Training and Validation ... 47

5.3. ML Evaluation and Results .. 47

5.4. Next Steps ... 49

5.5. References ... 49

6. Fire and smoke dataset.. 50

6.1.1. Structure of the dataset: .. 52

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 9 | 65

6.1.2. Ultralytics Hub proof of concept .. 52

7. Integration within SILVANUS Platform [DELL] .. 53

7.1. Fire and smoke detection from Atos ... 53

7.2. Health KPIs for response teams and citizens from UTH .. 55
7.2.1. Air quality data ... 56
7.2.2. Air quality metadata ... 58
7.2.3. Python code ... 61
7.2.4. Data and metadata ingestion to the SAL .. 62

7.3. Fire Spread Model from EXUS ... 63

8. Conclusion ... 65

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 10 | 65

LIST OF FIGURES

FIGURE 1: SILVANUS BIG-DATA FRAMEWORK ... 15
FIGURE 2 DATA INGESTION PIPELINE ARCHITECTURE ... 16
FIGURE 3: THE INTERACTION BETWEEN SAL AND OTHER COMPONENTS IN SILVANUS PLATFORM 19
FIGURE 4: METADATA VALIDATION ... 19
FIGURE 5: THE FLOWCHART OF DATA AND METADATA DEDUPLICATION .. 20
FIGURE 6: DATA AND METADATA DUPLICATION CHECK ... 20
FIGURE 7: APACHE NIFI IMPLEMENTATION FOR THE SAL MESSAGE QUEUE AND CCP.. 22
FIGURE 8: THE FORMAT OF ADDED FILED TO THE METADATA TO ENABLE CCP USING NIFI JOLTTRANSFORMJSON

PROCESSOR ... 23
FIGURE 9: THE WORKFLOW FOR THE DATA RETRIEVAL SOLUTION ... 23
FIGURE 10: QUERY FORMAT .. 23
FIGURE 11: AN EXAMPLE OF QUERY RESULTS .. 24
FIGURE 12: FILE DOWNLOAD REQUEST EXAMPLE ... 24
FIGURE 13 – ML LIFECYCLE ... 25
FIGURE 14 – KUBEFLOW DASHBOARD ... 28
FIGURE 15 – KUBEFLOW NOTEBOOKS ... 29
FIGURE 16 – KUBEFLOW PIPELINES ... 29
FIGURE 17 – KUBEFLOW EXPERIMENTS ... 30
FIGURE 18 – KUBEFLOW ENDPOINTS .. 30
FIGURE 19 - FIRE AND SMOKE ANNOTATED DATA (SAMPLE) ... 32
FIGURE 20 – FIRE AND SMOKE DETECTION USING REAL TIME VIDEO (VIDEO EXTRACT) ... 33
FIGURE 21 - TPH YOLO DETECTION EXAMPLES (TAKEN FROM TPH YOLO GITHUB PAGE) ... 33
FIGURE 22 - YOLOV8 BASED TRAINING RESULTS FOR 100 EPOCHS .. 34
FIGURE 23 - TWO SYNTHETIC IMAGES FROM SAME SOURCE WITH FIRE AND SMOKE ADDED .. 35
FIGURE 24 - ORIGINAL SATELLITE IMAGE .. 43
FIGURE 25 - SEGMENTED IMAGE .. 44
FIGURE 26 - LOW RESOLUTION IMAGE (FROM COPERNICUS SITE) AND SUPER-RESOLUTION RESULT 45
FIGURE 27 – ML MODELS CONSIDERED FOR PREDICTING NEXT DAILY FIRE DANGER. ... 46
FIGURE 28 – FIRE DANGER PREDICTION BASED ON CNN FOR JULY 16TH 2020 FOR GREEK REGION. 48
FIGURE 29 – FIRE WEATHER INDEX FROM HTTPS://CDS.CLIMATE.COPERNICUS.EU/CDSAPP#!/DATASET/CEMS-FIRE-

HISTORICAL FOR JULY 16TH 2020 FOR GREEK REGION. .. 49
FIGURE 30 - FIRE AND SMOKE (SYNT GENERATED IMAGE) .. 51
FIGURE 31 - FIRE AND SMOKE (SYNT GENERATED EXAMPLE) ... 51
FIGURE 32 - FIRE AND SMOKE SELF-PHONE TRAINING POC .. 53
FIGURE 33: PYTHON SCRIPT TO REQUEST PICTURE ANALYTICS FROM THE FIRE AND SMOKE DETECTION SERVICE 54
FIGURE 34 - FIRE AND SMOKE DETECTOR OUTPUT (ATOS) ... 55
FIGURE 35: SCREENSHOT SHOWS THAT THE METADATA IS SUCCESSFULLY RECEIVED BY THE SAL 62
FIGURE 36: SCREENSHOT SHOWS THAT THE DATA IS SUCCESSFULLY RECEIVED BY THE SAL .. 62
FIGURE 37: SUBMIT A QUERY FOR THE QUERY INTERFACE AND RECEIVES A RESULT PROVED THAT THE DATA IS STORED IN

THE SAL.. 63
FIGURE 38: AN EXAMPLE OF INGESTED DATA TO THE SAL .. 64
FIGURE 39. (A) LOGS OF SUCCESSFUL NOTIFICATION RECEIVAL BY RABBITMQ SUBSCRIBER AND (B) VISUALIZED DATA

RECEIVED DURING THE TESTING OF DATA INGESTION FROM THE SAL INTO THE FSM ... 65

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 11 | 65

LIST OF TABLES

TABLE 1 - STATUS AND PRE-PROCESSING CAPABILITIES WITHIN THE DATA INGESTION PIPELINE 17
TABLE 2 – VALIDATION PERFORMANCE SCORE FOR THE THREE DIFFERENT NETWORKS (CNN, LSTM, CONVLSTM) 48
TABLE 3: AIR QUALITY DATA .. 56

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 12 | 65

LIST OF ACRONYMS

ACRONYM DESCRIPTION

BCE Binary cross entropy

CNN Convolutional Neural Network

FWI Fire Weather Index

LSTM Long short-term memory

TPH Transformer Prediction Heads
YOLO You only look once
ML Machine Learning

WP Workpackage

SAL Storage Abstraction Layer

DL Deep-learning

CNN Convolutional neural network

JSON JavaScript Object Notation

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 13 | 65

EXECUTIVE SUMMARY

The objective of the deliverable is to outline in detail the activities carried out in workpackage
(WP5) of the SILVANUS project titled “Response coordination to contain the spread of
wildfires”. The WP consists of consists of five (5) tasks, out of which the deliverable outlines
the activities carried out in T5.1 to T5.3. The purpose of the deliverable is to report on the
demonstration of SILVANUS big-data framework that has been implemented which will serve
and act as the backbone for delivering data handling capacity for all the modules of the project
to be developed and integrated. In this regard, the deliverable provides a detailed description
of the different software components that have been developed which are aligned to the
needs of the project as validated by the stakeholders and reported in D2.1.

In addition to the report on the demonstration of various software components implemented
for data handling, the deliverable also reports on the scientific innovation of algorithmic
development for the detection of fire and smoke components. The use of different machine
learning approaches and deep-learning models have been elaborated in detail. Also, the
deliverable reports on the machine learning lifecycle management methodology that has
been adopted for enabling dynamic deployment of the trained models and to enable training
of the deep-learning models as new data emerges.

Each scientific development reported in the deliverable also includes a validation framework
that is used to evaluate the performance of the algorithms developed within SILVANUS.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 14 | 65

1. Introduction

SILVANUS project development has been systematically categorised to address all the three
phases of integrated wildfire management ranging from Phase A: Prevention and
preparedness to Phase C: Restoration and adaptation. While the Phase A and C activities are
being addressed in WP2, WP3 and WP6 and WP7 respectively, the focus on WP4 and WP5
have been placed on delivering effective and efficient technology solutions for the fire fighters
in tackling the detection and response coordination to wildfire incidents. To this end, the
activities of WP5 are aimed at building a big-data framework that will provide the necessary
software services deployed in the relevant cloud environment for enabling key insights to be
drawn from the different heterogenous data sources that have been deployed on the field.

The goal of Phase B activity on detection and response is to design and deliver an ICT platform
that offers advanced capabilities for the first responders (fire fighters, medical response team,
public administration authorities, civil protection agencies, forest management personnel,
and other relevant stakeholders). The project development will demonstrate the ability of fire
detection services that are being deployed in the forest and enable early-stage detection of
fire through the concept extraction of smoke. Additionally, the project also has carried out
research activity on the modelling of forest fire spread considering the impact of climate and
weather services and to enable coordination of a response with the deployment of forward
command centre to subdue and contain forest fire effectively and efficiently. The research
and technology innovation in the project will include knowledge gathered from Earth
Observation data sources, granular predictive models of weather and climate conditions, use
of autonomous systems to obtain the insights on the spread of fire. The deliverable will
summarise all the relevant activities carried out in WP5 addressing the challenges as outlined.

The structure of the deliverable is as follows. In Section 2, an overview of the SILVANUS Big-
data framework has been presented, which has been introduced in D8.1, that was submitted
in M12. The contents of the big-data framework section also include references to the
activities carried out in WP4, with special demonstration of the Apache NiFi data ingestion
platform and services. One of the core components of the big-data framework relates to the
storage abstraction layer (SAL), which has been described in detail within Section 2. The
scientific results on the development of data driven approaches for fire detection is reported
in Section 3, which includes summarised two complementary approaches that has been
adopted within SILVANUS. In Section 4, the data driven approach for modelling the fire spread
has been presented in detail, whose performance has been compared against the gold
standard of FLAMAP solution that has been adopted in the literature. Subsequently, in Section
5, the use of satellite data processing capabilities developed within SILVANUS has been
reported. In Section 6, the data-driven approach for fire danger risk prediction has been
presented. Section 6 describes the data set release on fire detection, followed by the
integration services outlined for demonstration in Section 7. The integration of health sensors
and knowledge components is also reported in Section 7. Section 8 presents the conclusion of
the deliverable and outlines the future work to be carried out during the project lifecycle.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 15 | 65

2. SILVANUS Big Data Framework

The Big Data framework is introduced in Deliverable 8.1 as a core component that
encompasses a collection of components responsible for the ingestion, storage,
transformation, and processing of data, collectively forming the foundation of SILVANUS,
enabling the creation of various user products. The Big Data framework is a unified ensemble
of components and APIs designed to empower an implementation in delivering the SILVANUS
user products, with the flexibility to be deployed on various suitable platforms. This
deliverable focuses on providing implementation details regarding the Storage Abstraction
Layer (SAL) and introducing the ML lifecycle management service within the Big Data
framework. The architecture diagram, depicted in Figure 1, illustrates the framework of a Big
Data system. It showcases the interconnectedness between the various components, the
framework itself, and the user products spanning different work packages (WPs)

Figure 1: SILVANUS Big-data framework

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 16 | 65

2.1. Data sources integration

Figure 2 Data Ingestion Pipeline architecture

Within the Big Data Framework data sources are ingested into the storage layer via the Data
Ingestion Pipeline, a tightly integrated component for managing the ingestion, annotation,
and pre-processing of data from a variety of providers. A brief summary of this component,
available datasets, and related tooling is described below, with further detail available within
the demonstration report D4.1.

Figure 2 Data Ingestion Pipeline architecture depicts the flow of data objects through the Data
Ingestion Pipeline, as data is ingested and moves through the corresponding Nifi pipeline. The
format, size, ingestion frequency and structure of this data can vary depending on the
provider. The specific implementation of each pipeline can vary; however, the flow and high-
level operations remain consistent. Metadata extraction of data objects at ingestion time is
one of these key processes that takes place at this stage, as this supports the data annotation
and later retrieval of data objects from the Big-data framework.

The Data Ingestion Pipeline directly communicates via a REST API with the SILVANUS Storage
Abstraction Layer (SAL), an abstraction component of the Big-data Framework and underlying
object storage solution. Exposed by the SAL is a single abstract POST HTTP endpoint that is
responsible for ingesting all data sources from the Data Ingestion Pipeline. The output HTTP
message from the Ingestion Pipeline follows a consistent format containing:

• HTTP Body – Object data: A single data object encoded as the HTTP message body

• Headers – Object metadata, Ingestion Pipeline Attributes: Extracted object
metadata is attached to the same HTTP request, following the SILVANUS Object
Metadata specification and format. Metadata generated by the specific ingestion
pipeline is also attached, these are the Apache Nifi flow file attributes generated from
the pipeline processors, including the initiating queue, dataset ingestion parameters
etc. This allows further enrichment of metadata provided alongside data objects to
be leveraged in the SAL.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 17 | 65

The ingestion of individual datasets is managed by a series of corresponding data pipelines.
As presented in Deliverable D8.1, we implement a communication solution based on
asynchronies message queue - the SILVANUS Message Bus. As part of the MVP and
demonstration of the Big Data Framework, we implement a series of initial ingestion queues
which map directly to a corresponding data pipeline.

As each ingestion queue corresponds to an individual data product, each pipeline implements
a corresponding MQTT listener, which awaits new messages published and in turn initiates
the ingestion of a data product. Messages are published two an ingestion queue via primary
mechanisms.

1. Static Product Ingestion: This category defines datasets which have statically defined
parameters for ingestion. Parameters for ingestion refer to attributes such as the
geospatial area, ingestion frequency, data format or temporal range. For some data
sources we need to only consider a statically defined set of parameters (and therefore
ingestion messages) which can be automated and ingested based on these
requirements.

2. Custom Product ingestion: Custom dataset parameters are a requirement of some
datasets, specifically the user products that leverage these datasets within AI/ML
training / inference and visualization dashboards. An example of this requirement is
presented in Section 0.

In order to ingest these custom datasets a user product can publish a message to the relevant
message queue, containing the specific ingestion and pre-processing parameters that are
required. In the following table we present the data sources ingested via the Data Ingestion
Pipeline and available for use within the SAL for the SILVANUS MVP demonstrations. It reflects
the current status and pre-processing capabilities within the Data Ingestion Pipeline for
demonstration purposes and can be expanded as new data source providers are integrated
and additional pre/post-processing techniques become available.

Table 1 - Status and Pre-processing Capabilities Within the Data Ingestion Pipeline

Queue Name Dataset Parameters Output

ingest.dem Digital Elevation
Model

pilot: [*pilot_string]
type: [dem, asp, slp]

Tiff

ingest.osm OpenStreetMaps
Road / Rail

Pilot: [*pilot_string]
type: [road, rail]
resolution: [*Int]
bbox: [*GeoJSON_coords]

GeoJSON,
NetCDF

ingest.sentinel-ndvi Sentinel-2/3 +
NDVI

resolution: [*Int]
footprint: [*GeoJSON_bbox]
cloud: [*Int]

SAFE, Tiff

ingest.lst Land Surface
Temperature

type: - [H, DC, TCI] NetCDF

ingest.ba Burned Area version: - [V1, V3] NetCDF
ingest.pop Population

Density
pop_year: - [*YYYY]
country: - [*ISO 3166 code]

CSV, Tiff

ingest.stf Short-term
Forecast

prod_date: - [*YYYY_MM_DD]
b_north: - [*float]

NetCDF

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 18 | 65

b_south: - [*float]
b_west: - [*float]
b_east: -[*float]

Ingest.clc Corine
Landcover

year: - [*YYYY]
b_north: - [*float]
b_south: - [*float]
b_west: - [*float]
b_east: -[*float]

Tiff

The implemented architecture supports the SILVANUS Platform with two key properties:

• Loose coupling of individual components – supporting cases where a connection link
between two components may be lost temporarily.

• Common communication framework – supporting key functionalities such as request
of custom datasets from user products and notification of dataset ingestion status
and availability to relevant user products.

2.2. Storage Abstraction Layer
The Storage Abstraction Layer (SAL) serves as an intermediary between data sources, user
products, and the object store within the SILVANUS system. Its primary function is to abstract
the object store, offering two key advantages. Firstly, it enables flexibility in managing data at
rest, allowing for efficient data management practices. Secondly, it decouples data from user
products in a multi-source, multi-client environment, providing support for security, policy,
privacy, and business constraints. By utilizing the SAL, the SILVANUS system achieves
enhanced control and adaptability in handling data across various components.

2.2.1. Object store
The object store serves as the central repository within SILVANUS for storing both raw and
processed data. Given that a significant portion of the ingested raw data in SILVANUS is
unstructured, it is more efficient to store it in a unified object store rather than employing
multiple databases for implementing the object store in SILVANUS, the MinIO object store is
utilized and managed through the standard S3 storage API. This combination ensures
seamless compatibility and efficient data management within the SILVANUS ecosystem. In the
SILVANUS platform, the Apache NiFi PutS3Object processor is used to store the data in the
MinIO object store.

MinIO is an open-source object storage system that is designed to be simple, scalable, and
cloud-native. It allows you to store and retrieve large amounts of unstructured data, such as
documents, images, videos, and other types of files. MinIO is built on the concept of object
storage, where data is stored as objects rather than in a hierarchical file structure. Each object
is assigned a unique identifier and is stored with its associated metadata. This approach allows
for efficient and flexible storage of data, as objects can be accessed and manipulated
independently. One of the key features of MinIO is its high scalability. It is designed to scale
horizontally by distributing data across multiple servers, allowing you to expand storage
capacity as your data grows.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 19 | 65

2.2.2. Data and metadata ingestion
The interactions among the SAL for the three ingestion methods - external, internal, and user
products - are depicted in Figure 3. A distinct SAL interface is required for each ingestion
method to facilitate communication. During this process, the date object and its metadata are
coupled and sent to the SAL by the Data Ingestion Pipeline (DIP) over endpoint. The SAL
implementation then processes the input based on its origin, validates the metadata, and
confirms that there are no data duplicates. The data objects are stored and/or forwarded to
the user products via the message bus, and a metadata entry is added to the metadata index.

Figure 3: The interaction between SAL and other components in SILVANUS platform

Figure 4 illustrates the implementation of the validation steps using Apache NiFi. The
validation process focuses on the mandatory fields specified in Table 7 of Deliverable 8.1.

Figure 4: Metadata validation

The SILVANUS SAL metadata index relies on the Knowledge Graph technology, which is
recommended to be implemented without blank nodes and duplicates to optimize search
efficiency. To achieve this, three duplication check steps are employed. The first step involves
a data duplication check, where the unique ID of the object data provided by the data source
is utilized. The second step utilizes the metadata Format field, which comprises subfields such
as type, resolution, and event. Lastly, the Spatial field describes the spatial characteristics of
the data object, including coordination and pilot. These duplication check steps are executed
using NiFi processors and JenaDB. Figure 5 shows the workflow of data and metadata
duplication checks. Figure 6 showcases the implementation of the Data and Metadata
duplication check process using Apache NiFi.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 20 | 65

Figure 5: The flowchart of data and metadata deduplication

Figure 6: Data and Metadata duplication check

Data objects in SILVANUS can sometimes be quite large, up to 5GB. To optimize performance
and minimize memory usage, these objects are primarily stored on disk in the temporary
directory and are only loaded into memory as needed. Conversely, since metadata messages
are lightweight, they are kept in memory. Data objects are only stored when they pass
metadata and data duplication checks. Once stored, the data objects are saved in the Object
storage using the Apache NiFi PutS3Object processor. If user products do not directly request
the data objects, they are deleted from the temporary directory. However, if the data objects
are passed to the message bus, they remain in the temporary directory until their expiration
date.

Once the data has been stored in the object storage, the results of the “Data and metadata
duplication check” process are transformed into Triples format before being included as an
entry in the knowledge-graph-based metadata index.

2.2.3. Data retrieval
Data retrieval is a fundamental capability facilitated by the SAL, which considers multiple
factors for efficient data access. These factors encompass the real-time or near real-time
velocity at which data is generated, processed, and analyzed, the size of the data, the
effectiveness of consuming large datasets within user product pipelines, as well as the ability
to efficiently query and retrieve both internal and external datasets. The SAL provides a range

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 21 | 65

of interfaces to support the SILVANUS services. These interfaces enable the services to
efficiently query, retrieve, and store objects and datasets, including their associated
metadata. The subsequent subsections outline the specifics of three methodologies employed
within the SILVANUS platform for data retrieval purposes.

2.2.3.1. Message queue
The purpose of this interface is to deliver event-based messages to consumers on the
platform. These messages can originate from various sources such as IoT far-edge sensors or
user products running on the SILVANUS cloud. When the message creator or publisher is the
data source itself, the message consumer directly receives the data. However, there is a
limitation in terms of the size of the published data object. It should be smaller than the
specified threshold, known as the Claim Check Pattern threshold (ccp_threshold). If the data
object exceeds this threshold, the appropriate solution is to utilize the Claim Check Pattern
for delivering messages to consumers.

RabbitMQ plays a crucial role in providing the message queue service within the SILVANUS
SAL. It is an open-source message broker software designed to facilitate the distribution and
processing of messages between different applications or components. RabbitMQ
implements the Advanced Message Queuing Protocol (AMQP), a widely adopted standard for
messaging middleware.

In order to maintain access control to the published data, a dedicated virtual host (vhost) is
assigned to each data source, ensuring separate environments with distinct read and write
permissions. Data consumers are required to obtain approval from the data source before
accessing a specific queue, and they are granted read-only permission to retrieve the data.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 22 | 65

Figure 7: Apache NiFi implementation for the SAL message queue and CCP

2.2.3.2. Claim Check Pattern
Due to the substantial size of some of the datasets handled by the SILVANUS system, which
can reach up to approximately 5GB, it is not advisable to directly pass such large files as part
of the event messages between services. To address this, the Claim Check design pattern is
employed. The SILVANUS SAL makes decisions based on this pattern's ccp_threshold and the
pub/sub queue policy. It saves the data objects in a temporary data repository while
updating the metadata with relevant details for retrieving the stored data objects using the
"Add retrieval Info to Metadata" processor depicted in Figure 7. As shown in Figure 8, the

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 23 | 65

updated field format enables consumers to retrieve the data utilizing the CCP solution
efficiently.

Figure 8: The format of added filed to the metadata to enable CCP using NiFi JoltTransformJSON Processor

2.2.3.3. Metadata index query
The SILVANUS SAL offers a metadata interface (i.e., the query interface in Figure 9) that
enables SILVANUS services to search the Metadata Index and locate the specific data objects
they need to fulfil their respective functions. This interface also provides the capability to
obtain additional metadata related to the requested object(s). When querying the Metadata
Index (Steps 1-4 in Figure 9), the response comprises a list of metadata entries that satisfy the
specified query constraints. Among the available fields within the metadata, the 'id' field is
particularly relevant, as it can be utilized to retrieve the corresponding data object through
the data retrieval interface (Steps 5-8 in Figure 9).

Figure 9: The workflow for the data retrieval solution

In Figure 10, an example of the query format for a user product is displayed, representing step
1 as depicted in Figure 9. It is noteworthy that the query format shares similarities with the
metadata input, both in terms of the format itself and the fields utilized within the query. This
alignment in format and fields allows for consistency and ease of use between the user
product query and the associated metadata input.

Figure 10: Query format

Figure 11 displays a portion of the response corresponding to the query depicted in Figure 10.
It provides an excerpt of the response that was generated as a result of executing the query,
presenting relevant information or data related to the query criteria.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 24 | 65

Figure 11: An example of query results

Figure 12 demonstrates a sample Python code that downloads a file with the id 'silvanus-
ld:eo:d015ddd1-20c0-48f3-9be8-8ac8ba65cd6d' from SAL.

Figure 12: File download request example

2.3. ML lifecycle management
2.3.1. Introduction: what ML lifecycle

The machine learning lifecycle management supports the creation and the execution of
machine learning experiments, from the data acquisition to the model serving. The entire
cycle is composed by different steps, which can be summarized as follows:

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 25 | 65

Figure 13 – ML lifecycle

1. Data preparation: it’s the first and most delicate phase, because it needs the
knowledge of the data and features, and needs a deep study of the data composition;
depending on this awareness, data are prepared through preprocessing activities, in
order to make them compliant with the problem that must be solved with, and with
machine learning algorithms to experiment.

2. Split data: data is split into different sets for being processed by machine learning
algorithms.

3. Training and validation model: it can be considered as a mini-cycle of subtasks, in
which many experiments can be performed with different algorithms and different
parameters configurations, each of them is evaluated through performance metrics,
such as, precision, recall, f-score, and so on.

4. Serving: the trained model can be exposed for processing elaboration requests about
predictions.

5. Monitoring and logging: the final step consists of monitoring the executions of the
served model.

Many tools and frameworks are available to address the purposes of this fundamental part of
the machine learning processes. A deep scouting of the principals has been provided, in order
to select the best solution for supporting the machine learning activities within the Silvanus
project.

2.3.2. Principal ML lifecycle management frameworks

Although there is a very large number of frameworks for managing ML lifecycle, the scouting
has been concentrated on the most popular and famous, in order to select the best solution
for the SILVANUS project. The following list is the result of this activity, where, for each
framework, advantages and disadvantages are summarized; for deeper descriptions the links
to the official sites are provided.

Neptune.ai (https://neptune.ai/)

Advantages:

https://neptune.ai/

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 26 | 65

• Works with any ML framework
• Keep track of any metadata type of a single experiment (from hyperparameters, to

plots, to source code and more)
• Distributed computing (log from multiple machines to the same run)
• Store and download models
• Keep track of dataset versions

Disadvantages:

• It can't serve the model
• It’s not free. It can be pricey (150 for teams, 600 for organizations)

Amazon Sagemaker (https://aws.amazon.com/pm/sagemaker/)

Advantages:

• SageMaker pipelines look almost identical to Kubeflow’s but it looks like their
definitions require lots more detail and do little to simplify deployment.

Disadvantages:

• The main reason not to use it, however, is because it does not allow portability, while
Kubeflow allows the user to keep the entire application portable between cloud
providers, as it can run anywhere that Kubernetes is supported

Prefect.io (https://www.prefect.io/)

Advantages:

• Manages workflows as flows of execution.
• Provides Open-Source for personal usage, priced for organization/cloud.
• Provides PY SDK, cloud deploying, UI.
• Highly used for serving.
• Can be free/open source for personal usages.
• Widely corporate usages and sponsoring.

Disadvantages:

• Priced for organizations.

Google Vertex AI (https://cloud.google.com/vertex-ai/)

Advantages:

• Uses Kubeflow’s software under the hood but with the infrastructure managed by
Google

• Works with pipelines
• Provides serving

https://aws.amazon.com/pm/sagemaker/
https://www.prefect.io/
https://cloud.google.com/vertex-ai/

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 27 | 65

• Probably cheaper as you only pay for the computing power as you’re using it
• Allows to avoid the negatives of Kubeflow while keeping the possibility of migrating

to another cloud

Disadvantages:

• It’s not free. It can be pricey

Kubeflow (https://www.kubeflow.org/)

Advantages:

• Every step of the ML lifecycle can be orchestrated with Kubeflow Pipelines, which are
controllable from a simple UI

• There are integrated notebook servers for quick experimentation and easy access to
the cluster’s resources

• It's a flexible and extensible framework due to it relying on Kubernetes to manage all
code execution

• Possibility to deploy a cluster autoscaler, enabling the cluster to scale to heavier
operations with no added complexity

• Each pipeline step is isolated in its own container, which improves the developer
experience as opposed to a monolithic solution where all the phased are bundled
together, like airflow

• Although even in Airflow there's the docker operator which allows you to execute a
command inside a Docker container

• Another benefit over Airflow however is the responsiveness of the UI with status
changes update in real time.

• The reusability of components is also a big benefit. There are many contributions in
this area by the community.

• Free, voluntary contributes can be sent.

Disadvantages:

• As a negative, in order to exploit the easy access to the full compute power of the
cluster from the notebooks, every script needs to be converted manually into a
Kubeflow component to get it running in a pipeline. This means writing a Dockerfile,
building a container, creating a component spec, and adding a custom container
spec to make sure it runs on the right nodes and requests enough memory.

Conclusions

The winning option seems to be Kubeflow because it scales better and offers a better
developing experience. It's simpler than SageMaker and more portable, and also it has access
to SageMaker jobs via Kubeflow components anyway. An option to use it through Google's
Vertex AI could be considered as well as it offers possibly better management of the Kubeflow

https://www.kubeflow.org/

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 28 | 65

infrastructure. A good solution could be also Prefect, since it has both Python sdk and UI, but
the license is not free for cloud solutions.

2.3.3. Kubeflow cloud environment

The Kubeflow solution has been deployed with the support of the official cloud environment
provider partner (INTRASOFT). It is on top of Kubernetes deploy and exploits it for creating
PODs for each component or virtual server (Notebooks, Pipelines, etc…). It supports multi-
account management, by assigning to each account a dedicated namespace in which the
analyst can operate. For SILVANUS project the namespace “lifecycleml” has been created and
provided; the namespace manager can grant access to other accounts.

The home dashboard is accessible to the following link:

https://kubeflow.platform.silvanus-project.eu/

And it appears as follows:

Figure 14 – Kubeflow Dashboard

On the left bar there are listed all deployed components. This distribution appears as complete
for all of the official components that Kubeflow environment supports.

Most important components, for the purposes of SILVANUS project, are “Notebooks”,
“Pipelines” and “KServe” (that shows its features through “Endpoints” section).

Notebooks component appears as follows:

https://kubeflow.platform.silvanus-project.eu/

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 29 | 65

 Figure 15 – Kubeflow Notebooks

When creating a new Notebook, a virtual environment has been set. This results in a new
notebook server, of different types (Jupyter, VS code, RStudio, etc…), each of the ones are
created from a pre-existing Docker image. Other important settings to select are the HW
features (cores, memory, etc…) and the volume to be associated with the Docker container
that starts the notebook server.

The Pipelines section allows to upload the ML pipelines developed through the SDks that
Kubeflow provides (i.e. Python SDK): the developers implement the steps of the pipelines
through the SDK and upload them into the environment. Each pipeline step is a Docker
container.

Figure 16 – Kubeflow Pipelines

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 30 | 65

The usage of Pipelines is very important for playing experiments and tuning hyperparameters
of ML algorithms, and for combining different components (steps) in order to train as the best
model as possible.

Running experiments are listed in section below:

 Figure 17 – Kubeflow Experiments

Through the KServe component it is possible to publish the trained model as endpoint, in
order to exploit it for predictions.

Figure 18 – Kubeflow Endpoints

The described environment shows the current state of the readiness of cloud deploying of the
ML lifecycle.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 31 | 65

2.4. System cloud-native readiness
The SAL has been successfully deployed and seamlessly integrated into the SILVANUS cloud
platform. All its components are designed for cloud-native environments and can be accessed
through IP-cluster or NodePort Kubernetes services. Below is a list of the SAL services along
with their corresponding SILVANUS cloud endpoints.

Service name Endpoint

SAL data and metadata ingestion pipeline http://AnyHostIP:30516/metadata/ingest

SAL message queue service (RabbitMQ) AnyHostIP:30672

Claim Check Pattern retrieval agent http://AnyHostIP:30666/api/getfile

Metadata schema http://AnyHostIP:30288/schema.json

Query interface http://AnyHostIP:31555/api/getinfo

Retrieval interface http://AnyHostIP:31222/api/getfiles

3. Data-driven approaches for fire detection

For the purposes of SILVANUS, ATOS and CTL have developed fire and smoke detection
algorithms to run on high and low edge devices, respectively. The primary purpose of these
algorithms was to detect fire near or on the edge, but a version of them will also be deployed
in the SILVANUS framework for checking other incoming imagery data. Specifically, images
arriving from UGVs and UAVs to NiFi, will pass through the additional step of the AI/ML
Processors to check if they contain fire/smoke. The need for this additional step, is to equip
the framework with another powerful fire/smoke detection tool, for cases it cannot happen
on the edge, and avoid missing any fire events.

While both ATOS and CTL, have the same end goal (detection of fire/smoke), different, but
complementary, approaches have been followed because of slightly different needs and
requirements. Nevertheless, using the two approaches makes the detection tool more
powerful, as they complement each other. In the following sections, the developed
approaches will be presented along with example results.

3.1. ML Approaches
3.1.1. Fire and smoke detection using Deep-learning

http://anyhostip:30666/
http://anyhostip:30288/
http://anyhostip:31555/

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 32 | 65

Atos has built a detector of fire and smoke that is able to detect these elements using real
color images as input. This detector can be run in “near” real time.

Atos approach has been based on the use of Yolov51 as base detector. This approach has been
afterwards extended to other Yolo related products like TPH-Yolov52 and Yolov83. The base
idea has been to use the capabilities of Yolo architecture to have a detector able to detect fire
and smoke in near real time footage.

The initial approach has been creating a tagging our own data set for fire and smoke, for this
task we have gathered over 30000 images of different sources, and we have annotated the
fire and the smoke in a semi-automatic way (see Figure 1 for an example). After this
annotation task, we trained the Yolov5l (“large model”) model with these images using docker
and Kubernetes with our cluster of machines.

Figure 19 - Fire and smoke annotated data (sample)

The result of our training is a state-of-the-art trainer able to detect fire and smoke in near real
time footage, as demonstrated in Athens General Assembly (see Figure 2 for an image of a
demonstration video). Resulting model and program has been dockerized for its posterior use.

1 https://github.com/ultralytics/yolov5
2 https://github.com/cv516Buaa/tph-yolov5
3 https://github.com/ultralytics/ultralytics

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 33 | 65

Figure 20 – Fire and smoke detection using real time video (video extract)

This detector is already very good at the task assigned, but we tried to explore possible
improvements of it in two directions:

- Improve detection in images as seen from a drone; that is, very small details in images.
- Improve detection precision and latency time.

For the first approach, we explored the use of TPH-Yolov5. TPH-Yolov5 is an open-source
project that uses TPH (Transformer Prediction Heads) to improve detection of different scale
objects (in our case small objects) (see Figure 3 for an example of detection using TPH-Yolov5)

Figure 21 - TPH Yolo detection examples (taken from TPH yolo github page)

Our next step was to adapt our dataset and train with this new architecture using our cluster
of machines. Resulting model and program has been also dockerized for its posterior use.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 34 | 65

The result of this training was worst in terms of detection precision. Additionally, it did not
improve significatively the detection from the drone footage nor was good enough for the use
of satellite images.

Second approach has been to use state-of-the-art detection algorithm (Yolov8 at the time of
the experiment) to re-train and improve our fire and smoke detector.

For this approach, we used YoloV8 with the Yolov8l model (“large” model) as base and we
trained it with the same dataset (you can see some metrics in Figure 4 for a training of 100
epochs).

Figure 22 - Yolov8 based training results for 100 epochs

Again, the resulting model was dockerized for future use.

The results of Yolov8 training were slightly (less than 1%) better than the results of Yolov5.

As a possible future direction (not only for SILVANUS, but for our commercial products) we
are planning to extend the dataset by using synthetic images (either images with fire added
by “inpainting” techniques or pure synthetic images) (see Figure 5)

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 35 | 65

Figure 23 - Two synthetic images from same source with fire and smoke added

3.1.2. Fire and smoke detection using Statistical machine learning
 4.1.2.1. Data collection and pre-processing

Before starting the development of the fire/smoke detection and localisation models, CTL
collected images from various sources to create the dataset needed for their training. An
overview of the dataset curation process can be found in sections 5.2.1.1 through 5.2.1.3 in
deliverable D4.2 Demonstration of social media analytics for localising the origin of wildfire
ignition. An initial dataset was created to start the training/testing of the algorithms, but it is
continuously updated from new sources (e.g., images collected from pilot sites) to enhance it
and increase algorithm robustness. The current version, contains ~21K images depicting fire,
smoke, both or none. Furthermore, fire/smoke-like objects (e.g., lanterns and clouds,
respectively) were also included to minimise false positives (i.e., incorrect classifications as
fire/smoke). Lastly, for the localisation models a subset of the images illustrating fire/smoke
underwent a manual annotation process for the identification of the areas of interest (within
the image) to use as ground truth during training.

 4.1.2.2. ML Approaches, ML training and validation

Lightweight variants of the selected detection algorithms were deployed on the CTL’s IoT Edge
devices, as described in section 4.1.2. through 4.5 in deliverable D4.1 - Demonstration of data
collection, aggregation of Earth Observations, weather/climate models and in-situ
environmental sensors for forest fire risk/threat assessment. For the case of the AI/ML
Processor though, that will be stationed in SILVANUS cloud, we do not have so strict power
and processing limitations, therefore the original (non-reduced) versions of the models will be
used. Additionally, to the detection models, the cloud will be employed with the localisation
models as well, to help identify the fire/smoke regions within the image. Examples of the
detection and localisation algorithms are shown in Figure X and Figure XII(a), respectively.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 36 | 65

Figure X - Smoke (left) and fire (right) detection model results

Several ML models are being tested, to determine the most efficient and effective ones for
the detection tasks. Some of these models being: ShuffleNet4, MobileNetV35 and Xception6.
More specifically, we are using two different networks – one for the fire and another for the
smoke detection, to ensure we achieve the peak performance of each detector because of
the discrepancies of the two phenomena (e.g., colour, movement, etc.). For the training of the
detectors, we fine-tune the aforementioned networks, to exploit existing knowledge, by
adjusting some of their weights to fit our data.

Material on the training of the fire detection model has already been presented in D4.2,
therefore here we will give emphasis to the current results of the smoke detector.

4 Ma N., Zhang X., Zheng H. T., Sun J., “ShuffleNetV2: Practical Guidelines for Efficient CNN Architecture Design”,
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 116-131

5 Howard, Andrew G. et al. “Searching for MobileNetV3.” 2019 IEEE/CVF International Conference on Computer
Vision (ICCV) (2019): 1314-1324.
6 F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1800-1807, doi:
10.1109/CVPR.2017.195.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 37 | 65

Regarding the smoke detection task, we have made significant progress in our experiments,
which involved testing and experimenting with various deep learning classification models
due to the nature of our image data and the construction of a sizable dataset (consists of only
several thousands of images). Due to the many available network architectures we aimed to
restrict the search space by considering the need for lightweight models that could also be
easily deployed in an edge computing environment and would not easily overfit, given our
datasets size. Therefore, we mostly focused on experimenting with networks that fulfilled
specific requirements and restrictions.

Our primary criterion was that the models should be lightweight, ensuring that the time per
inference step on a CPU was less than 100 ms and their total size was under 75 MB, in order
to include only relatively small architectures with not so many parameters. To meet these
specifications, we carefully selected architectures that met these criteria, ultimately opting
for the most sophisticated model within the chosen family. The model architectures that we
trained, fine-tuned, and evaluated include: EfficientNetB2V2, DenseNet169, NASNetMobile,
MobileNetV3Large, and MobileNetV3Small. By systematically exploring these models, we
aimed to identify the most effective solution for smoke detection, balancing accuracy and
efficiency for real-world deployment. During our experiments, for all the models tested in our
smoke detection experiments, we applied transfer learning by utilizing pre-trained versions of
the aforementioned networks. These pre-trained models were based on the
ImageNethttps://www.image-net.org/7dataset.

To adapt the models to our specific smoke detection task, we made modifications to their
architecture. We retained only the backbone of the pre-trained networks, removing their
original head part (fully connected layers) of the networks. In place of the removed head, we
incorporated our own fully connected layers at the end of the architecture. By utilizing the
pre-trained backbone as a feature extractor, the model leveraged the valuable learned
information from the previously trained task. Consequently, this approach allowed the models
to effectively learn to distinguish smoke in the given images.

Furthermore, we experimented with various fine-tuning and transfer-learning settings. For
instance, we tested freezing the backbone base (feature extractor) entirely or just initializing
it with the pre-trained weights and continuing the learning process. After careful evaluation,
we found that the optimal setting involved freezing the backbone’s weights during the initial
epochs and then unfreezing the entire network while using a smaller learning rate. This
approach prevented the complete erasure of the original features learned from the pre-
trained task and ensured better adaptation to our smoke detection objective. Overall, the
combination of transfer learning using pre-trained networks, adapting the architecture, and
fine-tuning the models allowed us to make substantial progress in our smoke detection
experiments.

Based on the results of the above-mentioned experiments, the model which was found to be
the most suitable and had the best performance was the MobileNetV3Large, which roughly
consists of 3.3 million parameters (including the additional fully-connected layers). The
particular model scored F1-score=0.88 on unseen test data examples of the output of the
specific detection algorithm are shown in Figure Z. Finally, it is crucial to mention that the
algorithm was also tested on image data which were collected during the pilot in Croatia.
Contentedly the model accurately detected the observed smoke in the images presented.

7 https://www.image-net.org/

https://www.image-net.org/

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 38 | 65

Figure Z - Smoke Detection Results of fine-tuned MobileNetV3Large model

Regarding the localisation networks, at the moment we have results only for the case of fire,
which as described in previous deliverables, we are following a superpixel approach (see
example in Fig. XII-a). Adopting a superpixel segmentation algorithm, instead of the
conventional bounding boxes, has the advantage of detecting smaller and more irregular
areas of the image (instead of rectangle areas) – making the detection of small fire sources
even within dense forestry more accurate. Additionally, to the training of the model, we
focused on the post-processing of its results to smooth-out the predicted fire area and reduce
any false positives. In Figure XII(b) we demonstrate the fire localisation results on a sample
image, before and after the superpixel localisation post-processing.

Figure XII (a) - Fire localisation baseline algorithm results on sample images

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 39 | 65

Figure XII (b) - Fire localisation on sample image before post-processing (left) and fire localisation after post-

processing results (right).

For the case of smoke localisation, unfortunately the aforesaid method does not yield good
results because smoke’s color and density significantly vary, depending on the material that
is being burned, making smoke localisation slightly more challenging task. Besides this smoke,
by nature, looks a lot like other physical phenomena (e.g., clouds, mist, etc.). This resemblance
(see Figure Y) gets even more enhanced when you focus on smaller areas of the image, as
done in the case of superpixels. So far, for smoke localisation, we have experimented with the
employment of object detection models, like YoloV58, to precisely locate the smoke within a
picture or video frames. However, labelled data that include the exact bounding area that the
smoke is located in sample images is required to obtain a model which behaves accurately. At
the time being, the labelled samples in our disposal are only a few hundreds of images,
therefore, we are actively exploring the possibility of expanding our dataset to construct more
accurate object detection models for this enhancement. Currently, our best version of YoloV5
achieved mAP%0.5 = 0.56 on the smoke localisation task.

Furthermore, we plan to experiment with spatio-temporal algorithms, for the analysis of video
frames or sequential images. By incorporating the temporal dimension in our algorithms, we
aim to achieve higher robustness and generalization accuracy, even in the most challenging
scenarios (smoke covering fire, fire far away from the camera etc.).

As this is a work in process, the final models for both the fire/smoke detection and localisation
tasks will be presented in deliverable D4.5 - Report on SILVANUS advanced detection
capabilities.

8 https://pytorch.org/hub/ultralytics_yolov5/

https://pytorch.org/hub/ultralytics_yolov5/

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 40 | 65

Figure Y - Comparison of image subareas with smoke (left) and mist (right).

Lastly, it is worth mentioning that all models will be dockerised and installed on SILVANUS
cloud so that NiFi (and potentially other services) can use them to process new images.

Regarding the localisation networks,

4. Data-driven approaches for fire spread

4.1. ML Approaches

EXUS has developed an initial model that predicts the spread of fire over the next period, given
information about the current position of the fire, the topographical features of the
landscape, fuel availability and characteristics, and the weather conditions in the area.

Given the spatial structure of the data, a convolutional neural network (CNN) wastrained to
make this prediction. All input parameters and features were converted into images, and each
channel in the input “image” is a different feature of the current scenario. This includes: the
current and historic position of the fire (using up to two hours of historic data); topographical
information including the aspect, elevation, slope, canopy cover and fuel model of the area;
and weather data including information on temperature, humidity, cloud cover, wind
direction and wind speed. The output is an image with a single channel which predicts where
the fire will be in the future (using a value of 0 or 1 to represent which pixels are not yet
burned or burned, respectively).

The current specifications of the models are as follows. The size of the area that the images
represent is one square kilometer (e.g., 1x1 km), and each pixel has a resolution of 10m by
10m. The model currently predicts the position of the fire one hour into the future. Both the
area represented by the image, and the future time in which the prediction takes place can
easily be changed to train a new model, depending on the needs of the end users.

The CNN is built using PyTorch. It has 17 channels in the input image (these layers are
described above) and a single channel in the output image. There are three hidden layers in
the CNN, of 32, 64 and 32 channels respectively.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 41 | 65

4.2. ML Training and Validation

The model above is trained using 4,875 images, for a total of 100 epochs. A binary cross
entropy (BCE) loss function is used, given that the problem is formulated as a classification
problem (each pixel must be classified as burning or not burning). During training, the model
was evaluated on 696 validation images, and the BCE loss was calculated at the end of each
epoch. The model was trained using a batch size of 32 images. After training was completed,
the model was tested on 1,392 entirely unseen images.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 42 | 65

4.3. ML Evaluation and Results

The final model had a training accuracy of 94.1%, a validation accuracy of 93.9%, and a test
accuracy of 93.1% (showing little evidence of overfitting). The final training BCE loss of the
model was 0.362. The results were visually inspected (see image above) to assess how
reasonable the predictions were (e.g., did the burned area remain burned, were the
magnitude and direction of the new burned areas comparable to the actual burned area?). A
cut off of 0.5 was used to classify pixels as burned or not burned. This cutoff can be modified
to make the model more conservative or aggressive, depending on the needs of the end user.

5. Satellite supporting tools

5.1 ML Approaches

Atos has created two supporting tools for helping in the analysis of images taken from
satellite: Segmentation module and Super-resolution module.

Segmentation module has used as base the GeoSeg repository9. This module was state-of-
the-art at the moment and is using a semantic segmentation toolbox based on PyTorch that
makes use of advanced Vision Transformers for remote sensing (e.g., satellite) image.

We retrained this repository with our own dataset of satellite images using our hardware
cluster for training. The resulting module was dockerized.

You can see some results in next figures. Figure 24 shows the original image and Figure 25 the
segmented version.

Next actions for our side will be to compare the result of the segmentation against the results
offered by Copernicus Land Monitoring Service10.

9 https://github.com/WangLibo1995/GeoSeg
10 https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 43 | 65

Figure 24 - Original satellite image

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 44 | 65

Figure 25 - Segmented image

Superresolution module was created as a complementary tool. The objective was to improve
the satellite images in cases where the quality was not adequate for a proper segmentation.

Superresolution was created based on StableDiffusion 2.0 (using the so-called
StableDiffusionUpscalePipeline)11. Resulting module has been dockerized.

This module was tested with satellite images that later were segmented using the
segmentation tool for checking and comparing results (Figure 8)

11
https://huggingface.co/docs/diffusers/v0.16.0/en/api/pipelines/stable_diffusion/upscale#diffusers.StableDiffusi
onUpscalePipeline

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 45 | 65

Figure 26 - Low resolution image (from Copernicus site) and super-resolution result

5. Data-driven approaches for fire danger risk prediction

The danger and risk of fire depends on several factors, and the correlation between these
factors can be spatial, temporal or spatio-temporal. For instance, the occurrence of fire
primarily depends on the availability of burnable mass, which in turn depends on the weather
not only on the day of the fire but also on the weather of the days preceding the fire event.
On the other hand, spatial correlation between neighboring areas is important to predict the
probability of the fire to grow into neighboring areas e.g., the topography, wind speed etc.
Including only the spatial or temporal features neglects their correlation which is important
to predict the joint probability that a fire will occur and further grow into a large. The joint
probability of fire is important in order to properly allocate resources to more severely
affected areas.

In order to evaluate data-driven approaches and compare them with empirical approaches
for fire danger risk we followed the work by [1] in which they study the use case of forest fires
in the region of Greece.

5.1. ML Approaches
Keeping in mind the spatial, temporal and spatio-temporal nature of forest fire, we test three
different neural networks. Spatial correlation between the fire events and the features are
best explored using a Convolutional Neural Network (CNN) [2]. Temporal correlation instead
is best explored using Long Short-Term Memory (LSTM) [3] as it is capable of taking time series
data as input. To explore correlations between the spatial and temporal features, we adopt a
ConvLSTM [4].

Input Features

The input of all three networks consists of the following features that are important for the
prediction of fire: 1) daily weather forecast which includes the maximum and minimum
temperature, and components of wind speed together with max precipitation, 2) Local
vegetation includes Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation
(Fpar), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI),

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 46 | 65

3) Other satellite variables such as day and night land surface temperature, 4) factors related
to human activity are modeled using maps of road density, population density, and 5)
topography variables include elevation, aspect and slope. The network inputs are mapped to
the historical burned pixel on the next day. The weather forecast maps are taken on the same
date, while the satellite features are taken from the previous. All the input features are
harmonized to the same resolution.

Network configuration

Figure 27 – ML Models considered for predicting next daily fire danger.

The three different networks (CNN, LSTM and ConvLSTM) considered and the input are
schematically shown in Figure 27 (adapted from [1]). Each of the input features of the network
is mapped to the burned value of the pixel: 1 if the pixel is burned on the day and 0 if it is not
burned.

For CNN, the input consists of 25 x 25 pixel images in 18 channels (13 dynamic features, and
5 static features listed in the previous Section Input features) i.e. a single input has the shape
of 1 x 18 x 25 x 25. The image is centered around the location of the burned pixel. For LSTM,
the input consists of time series data spanning 10 days for each pixel in the dataset for all the
18 input features (10 x 18 x 1 x 1). For ConvLSTM, the input is a time series consisting of 25 x
25 images in 18 channels (10 x 18 x 25 x 25).

In CNN, we perform the convolution using 16 filters with kernels of size 3 x 3, convolved with
padding of 1 and stride of 1. Following the convolution layer, a 2 x 2 max pooling is performed
after which the flattened output is passed through linear layers separated by a dropout layer
of p = 0.5 and then finally passed to a 2-class logsoftmax layer. The learning rate and weight
decay are set to 0.0004, and 0.03 respectively.

In LSTM, we use one LSTM layer with 64 neurons the output of which passes through two
linear layers of 64 and 32 neurons, respectively, where the neurons are separated by a
dropout layer of p = 0.5. The output of the linear layers is then passed to a 2-class logsoftmax
layer. The learning rate and weight decay are set as 0.001, and 0.01 respectively.

For ConvLSTM, the convolution part of the network follows the configuration of a CNN as
having 16 filters with 3 x 3 size kernel whereas the LSTM part consists of a single LSTM layer.
For ConvLSTM, weight decay and learning rate are set at 0.03, and 0.0001 respectively.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 47 | 65

5.2. ML Training and Validation
The training and validation of the networks is performed using the dataset by Prapas et al. [5],
where they study the use case of predicting Fire danger in Greece. The dataset contains
historical data for the input features and the information of the burned pixel, harmonized to
a uniform resolution of 1 km x 1 km. Furthermore, the dataset spans from 2009 to 2020.

We use the data from 2009 to 2018 for the training dataset and 2019 for the validation
dataset. We choose to follow this procedure of splitting the training and validation data
instead of random splitting in order to avoid overestimating the performance of the network.
Prediction of fire danger is a forecasting problem and must be validated with a dataset from
the future or hindcast in the past.

The dataset for training is prepared in the following way: for each year in the dataset, we
collect all pixels where fire occurred and extract the features in the format required by each
of the networks described in Network configuration.

In a problem like predicting fire danger, the negative sampling (sampling of No Fire events) is
very important because the dataset is imbalanced - there are many more negative events than
positive events (Fire events). In order to avoid the network from learning very trivial mapping
care must be taken when drawing the negative samples (for example, picking negative
samples from areas which are at little to no fire risk). We therefore randomly sample twice as
many negative samples as positive samples, taking care that, 1) for any given year, pixels
which have already been included in the positive sample at any day are not included in the
negative sample, 2) we use CLC classes to select negative samples from regions which are
susceptible to fire risk (for example, sea or water bodies cannot be at risk of forest fire), and
3) we sample negative events from the months which present high fire risk.

The features extracted from the procedure mentioned above are presented to the network in
batches of 128 samples/batch and trained for 50 epochs. We use a cross-entropy loss function
with Adam optimizer. To further balance the dataset, in computing the loss function, we weigh
the class of Fire events more than the No Fire events.

The network performance is measured using the AUROC, F1, F2, Precision and Recall scores;
the F2 score of the validation dataset during the training is used to select the best model which
is used for the inferencing phase. The weights given to the class of Fire events in the
computation of the loss function are optimized to achieve a balance between the Precision
and Recall score (with more weight towards the recall score).

5.3. ML Evaluation and Results
After selecting the best models of each type (CNN, LSTM and ConvLSTM) following the
procedure described in the previous section, in this section we report the results from the
best model and comparing the results with the Fire Weather Index, which is has been a
standard since several decades [6].

The FWI is considered an accurate empirical model for predicting the occurrence of forest
fires. Keeping this in mind, we compare the fire danger map of Greece from our network with
the FWI map for a given day.

In the following table the validation score corresponding to the best models chosen during
the training are reported.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 48 | 65

Table 2 – Validation performance score for the three different networks (CNN, LSTM, ConvLSTM)

Network/Score Precision Recall AUROC F1

CNN 0.48 0.82 0.69 0.60

LSTM 0.52 0.80 0.71 0.63
ConvLSTM 0.64 0.87 0.81 0.74

While these scores, indeed, represent the statistical performance of the network for the
validation dataset, it is only part of the picture. Therefore, in the following figure for example
we compare the fire danger prediction of the CNN network for a given day with the FWI of the
same day.

Figure 28 – Fire Danger Prediction based on CNN for July 16th 2020 for Greek region.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 49 | 65

Figure 29 – Fire Weather Index from https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical

for July 16th 2020 for Greek region.

Comparing the two approaches for the Greek region, one can appreciate the similar patterns
of the two maps in general. In addition, however, the prediction map from CNN shows finer
details in the occurrence of fire due to higher resolution, and the additional information
provided during the training of the network in the form of the feature described in Section
Input features. Compared to the FWI, the additional information, in particular those
concerning human activity, helps the network in better assessing the fire danger in specific
areas compared to the FWI.

5.4. Next Steps
In the second part of the project, we will focus on the train/validation and testing of CNN,
LSTM and ConvLSTM models and assessing their performance in predicting fire danger in the
peak fire season in the SILVANUS pilot sites (Gargano, Portugal) using heterogeneous datasets
(EO Satellite data and derived products – e.g., NDVI, FAPAR, high-resolution weather
forecasting models).

5.5. References
[1] Prapas, Ioannis, et al. “Deep Learning Methods for Daily Wildfire Danger Forecasting.”
arXiv, 2021. arXiv, https://arxiv.org/abs/2111.02736.

[2] Yann, Lecun, et al. “GradientBased Learning Applied to Document Recognition.”
Proceedings of the IEEE, vol. 86, no. 12, 1998, pp. 2278-2324.

[3] Sepp, Hochreiter, and Jurgen Schmidhuber. “Long short-term memory.” Neural
Computation, vol. 9, no. 8, 1997, pp. 1735-1780.

[4] Shi, Xingjian, et al. “Convolutional LSTM Network: A Machine Learning Approach for
Precipitation Nowcasting.” arXiv, 2015. arXiv, https://arxiv.org/abs/1506.04214.

[5] Turner, J.A., and B.D. Lawson. “Weather in the Canadian Forest Fire Danger Rating System.
A user guide to national standards and practices.” Pacific Forestry Centre, 1978.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical
https://arxiv.org/abs/2111.02736
https://arxiv.org/abs/1506.04214

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 50 | 65

[6] Prapas, Ioannis, et al. A Datacube for the analysis of wildfires in Greece. 2021. Zenodo,
https://zenodo.org/record/4943354#.ZIMjFNJBwUT. Accessed 9 June 2023.

6. Fire and smoke dataset

Atos has created for Silvanus a fully operational dataset of fire and smoke in 50forest areas
using a drone view. All the images are tagged. The photos (25903) have been synthetically
generated. The process for the creation and tagging of the dataset has been:

- Creation of the “prompts” for the synthetic images: In this phase, we created 141
prompts of forest fires as seen from drones. To generalize, we also included different
types of terrain, vegetation, time of day, altitude, season and visibility, including also
nighttime. We included different types of trees, meadows, shrubs, and undergrowth.

- With this “prompts” we launched the process of creation of synthetic data, creating,
in different batches, up to 100 photorealistic images of each prompt. The rate of
creation was of 1 image per 11 seconds using Nvdia 3080 graphical card. In this phase
we created roughly 30000 images. This phase took more than one week. (see Figure
27 and Figure 28 for some examples)

- After finishing this process, we passed the resulting images through an artificial
intelligent “interrogator” based on CLIP to filter images with some defect or artefact.
We discarded all images that were not realistic enough (e.g. fire over water) or not
valid for our propose (e.g. fire in buildings) between other trials. In this phase we did
not eliminate images without fire and smoke. This process took less than 8 hours
discarding over 2000 images.

- Finally, we passed the resulting images though Atos detector of fire and smoke
modified to:

o Create the labelling using coco-dataset style.
o Discard all images that does not have, at least, one fire and/or smoke

detection on them.
- The final set, prepared for training, included 25903 images and their labels. The set

was prepared using the Coco dataset files structure.

The dataset has been uploaded to : https://venakatreleaf.sharepoint.com/:f:/r/sites/silvanus-
ga/Shared Documents/General/Datasets?csf=1&web=1&e=u8CHA1 as a ZIP file (uploading as
non-zip probed to be too prone to failure)

https://zenodo.org/record/4943354#.ZIMjFNJBwUT
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fvenakatreleaf.sharepoint.com%2F%3Af%3A%2Fr%2Fsites%2Fsilvanus-ga%2FShared%2520Documents%2FGeneral%2FDatasets%3Fcsf%3D1%26web%3D1%26e%3Du8CHA1&data=05%7C01%7Cjose.martinezs%40atos.net%7Cb9cab0e2998c4a0229d608db67e6b0b7%7C33440fc6b7c7412cbb730e70b0198d5a%7C0%7C0%7C638218012733672646%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1B0UeQhUVjrO%2BI1FLgRsCo0XtI%2FYFDFLj9NV3xSEpzQ%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fvenakatreleaf.sharepoint.com%2F%3Af%3A%2Fr%2Fsites%2Fsilvanus-ga%2FShared%2520Documents%2FGeneral%2FDatasets%3Fcsf%3D1%26web%3D1%26e%3Du8CHA1&data=05%7C01%7Cjose.martinezs%40atos.net%7Cb9cab0e2998c4a0229d608db67e6b0b7%7C33440fc6b7c7412cbb730e70b0198d5a%7C0%7C0%7C638218012733672646%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1B0UeQhUVjrO%2BI1FLgRsCo0XtI%2FYFDFLj9NV3xSEpzQ%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fvenakatreleaf.sharepoint.com%2F%3Af%3A%2Fr%2Fsites%2Fsilvanus-ga%2FShared%2520Documents%2FGeneral%2FDatasets%3Fcsf%3D1%26web%3D1%26e%3Du8CHA1&data=05%7C01%7Cjose.martinezs%40atos.net%7Cb9cab0e2998c4a0229d608db67e6b0b7%7C33440fc6b7c7412cbb730e70b0198d5a%7C0%7C0%7C638218012733672646%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1B0UeQhUVjrO%2BI1FLgRsCo0XtI%2FYFDFLj9NV3xSEpzQ%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fvenakatreleaf.sharepoint.com%2F%3Af%3A%2Fr%2Fsites%2Fsilvanus-ga%2FShared%2520Documents%2FGeneral%2FDatasets%3Fcsf%3D1%26web%3D1%26e%3Du8CHA1&data=05%7C01%7Cjose.martinezs%40atos.net%7Cb9cab0e2998c4a0229d608db67e6b0b7%7C33440fc6b7c7412cbb730e70b0198d5a%7C0%7C0%7C638218012733672646%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1B0UeQhUVjrO%2BI1FLgRsCo0XtI%2FYFDFLj9NV3xSEpzQ%3D&reserved=0

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 51 | 65

Figure 30 - Fire and smoke (synt generated image)

Figure 31 - Fire and smoke (synt generated example)

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 52 | 65

6.1.1. Structure of the dataset:

The dataset is included in the folder called "fire" compressed into a file called
“fire.zip”. Inside the “fire” folder you can find:

- fire.yaml: is a file, contains the description of the classes. There are only two
classes in our dataset, “0” for fire and “1” for smoke

- images: is a folder including all images. Inside, you can find:
o "train" folder with all images for training (20722 images files). This is

roughly the 80% of the dataset
o "val" folder with all images for validation (5181 images files). This is

approx. 20% of the dataset.
- labels: is a folder with all labels. Inside you can find:

o "train" folder with all labels for training (20722 labels files). This is
roughly the 80% of the dataset. The names of the labels files are the
same as the image file names with extension "txt"

o "val" folder with all images for validation (5181 labels files). This is
approx. 20% of the dataset. The names of the labels files are the same
as the image file names with extension "txt"

o The format of the labels follows COCO tagging format:

 ClassID x_center y_center width height

Note that all the numbers are normalized between 0 and 1 using the
width and height of the image
ClassID is the same found in the yaml file; 0 for fire and 1 for smoke

6.1.2. Ultralytics Hub proof of concept

As a proof of concept and test of the dataset already created, we trained a small subset of it
using Ultralytics HUB12 in order to obtain a detector able to be run in an Android self-phone.

We made two small tests:

- First, we uploaded 2000 images for training and 1000 for validation in a private view
- Then, we trained the images (using google Colab) including:

o Yolov5 during 100 epochs
o Yolov8 during 100 epochs

- Result was then migrated to Android compatible format and put inside Ultralytics App
in our personal account (using a private view).

The resulting models, although limited, are good enough to detect fire and smoke using an
Android self-phone (Figure 29).

12 https://ultralytics.com/hub

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 53 | 65

This POC proves the quality of the created dataset. Certainly, including more fine tuning of
hyperparameters, the use of more images and more epochs of training will yield a better
result.

Figure 32 - Fire and smoke self-phone training POC

7. Integration within SILVANUS Platform [DELL]

7.1. Fire and smoke detection from Atos

Atos fire and smoke detector will be executed in the pipeline of image detection running in
the Edge device provided by Dell.

• The detector will be connected to Rabbit MQ subscribed to the JSON message
containing the picture to analyze. Whenever a new image arrives, the system will read
it, decode it (from base64 format) and analyze it looking for fire and smoke. Currently,
the Fire and smoke detection service is tested and validated over “AtosTest” queue.
Displayed in Figure 30 is a sample Python code snippet that illustrates how to utilize
the SAL RabbitMQ message bus for requesting the Fire and Smoke Detection service.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 54 | 65

Figure 33: Python script to request picture analytics from the Fire and smoke detection service

• As an output, the system will send a JSON message to Rabbit MQ containing the
detection data (image with detection, boxes and confidence of the detection). The
image with the detections (see Figure 30) will be sent inside the JSON using base64
encoding.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 55 | 65

Figure 34 - Fire and smoke detector output (Atos)

7.2. Health KPIs for response teams and citizens from UTH
This subsection provides an overview of the files adopted to annotate sensor readings that
monitor the effects of a fire in a specific area. In this documentation, we provide details about
two json files, i.e., data.json & metadata.json as well as for the accompanying Python code
which is responsible to produce/manage them. These files are used in a data processing
workflow involving the submission of files to a specific URL (http://192.168.168.4:9004/) using
a multipart POST request where the collected data can be consumed by other components.

The data processing workflow consists of the following steps:

1. Collect emissions data from Raspberry Pi sensors.

2. Store collected data in a Mongo DB.

3. Analyze data and calculate the Air Quality Index (AQI).

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 56 | 65

4. Create the respected data.json and meta-data.json files.

5. Submit the latter files to the SILVANUS Cloud.

The discussed JSON files represent data and meta-data information related to
environmental sensors and air quality measurements, as presented in Table 2.

Table 3: Air quality data

JSON File Version
Date

Short Description Target

data.json V1.0

15/06/2023

This file contains a structured
representation of data, specifically
related to air quality sensor readings

Health impact
monitoring

meta-data.json V1.0

15/06/2023

This file contains metadata
information associated with the
data.json file

Health impact
monitoring

7.2.1. Air quality data
The first JSON file (data.json) captures sensor data related to various air quality parameters
and provides location and timestamp information for each measurement.

The structure, as well as the content of each field, are summarized as follows:

● uuid: A unique identifier for the data entry.

● sensors_type: An array that lists the types of sensors used. In this case, it includes PM
(Particulate Matter) measurements, sulfur dioxide, carbon monoxide, nitrogen
dioxide, and ozone.

● timestamp: The date and time when the data was recorded, in ISO 8601 format.

● location: An array containing location information where the measurements were
taken. It includes a placename and geometry (latitude and longitude coordinates)
within a Point object.

● area: An object that specifies the area of influence for the sensor data. It includes the
radius value and the unit of measurement.

● sensor_id: The identifier of the sensor device used to collect the data.

● sensory_data: An object that provides the measured values for each sensor type. Each
sensor type has an associated sub-object with a value and a unit.

● AQI: The Air Quality Index (AQI) value is calculated based on the collected data. In this
case, the AQI is categorized as "Extremely Poor."

An example of the data.json is presented below:

1. {

2. "uuid": "uth-123123-lkasjd82-askjd91230asd",

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 57 | 65

3. "sensors_type": [

4. "PM1.0",

5. "PM2.5",

6. "PM10.0",

7. "sulfur dioxide",

8. "carbon monoxide",

9. "nitrogen dioxide",

10. "ozone"

11.],

12. "timestamp": "2023-04-23T11:29:36.372+00:00",

13. "location": [

14. {

15. "placename": "somewhere",

16. "geometry": {

17. "type": "Point",

18. "coordinates": [

19. {

20. "lat": 35.151688,

21. "lon": 33.350244

22. }

23.]

24. }

25. }

26.],

27. "area": {

28. "radius:": 2,

29. "unit": "meter"

30. },

31. "sensor_id": "raspberry_1",

32. "sensory_data": {

33. "PM1.0": {

34. "value": 228.0,

35. "unit": " micrograms per cubic meter"

36. },

37. "PM2.5": {

38. "value": 230.0,

39. "unit": " micrograms per cubic meter"

40. },

41. "PM10.0": {

42. "value": 527.0,

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 58 | 65

43. "unit": " micrograms per cubic meter"

44. },

45. "sulfur dioxide": {

46. "value": 228.0,

47. "unit": "ppm"

48. },

49. "carbon monoxide": {

50. "value": 1.0,

51. "unit": "ppm"

52. },

53. "nitrogen dioxide": {

54. "value": 0.2,

55. "unit": "ppm"

56. },

57. "ozone": {

58. "value": 0.2,

59. "unit": "ppm"

60. }

61. },

62. "AQI": "Extremely Poor"

63. }

7.2.2. Air quality metadata

The meta-data.json file contains metadata information about the data.json file including
details about the data format, spatial and temporal aspects, data lineage, and associated tags.
The structure, as well as the content of each field, are summarized as follows:

● descriptor: Contains information about the JSON file's descriptor.

● uuid: The unique identifier associated with the data in the data.json file.

● obj-class: The object class, which in this case is "IoT" (Internet of Things).

● format: Describes the format details.

● type: The type of format used, which is JSON in this case.

● resolution: The resolution value associated with the data.

● output: The output format used, which is also JSON.

● access: Describes the access level or permission setting for the data, set to "default"
in this case.

● dataset-type: Specifies the type of dataset, specifically "air-quality".

● created: The timestamp or date when the data was created, provided in Unix
timestamp format.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 59 | 65

● spatial: Contains spatial information about the data.

● bbox: Represents a bounding box polygon defined by a set of coordinates, forming a
closed shape.

● coordinates: Contains an array of latitude and longitude coordinates that define the
bounding box.

● pilot: Indicates the pilot project associated with the data, specified as "greek".

● temporal: Contains temporal information about the data.

● datetime: Specifies the temporal reference, set to "latest" indicating the most recent
data point.

● daterange: Indicates the availability of a date range for the data, specified as
"from:to".

● lineage: Describes the lineage of the data object.

● source: Specifies the source of the data. In this case, it is an empty array indicating no
specific sources.

● processing: Indicates the processing stage of the data, set to "raw" implying that the
data is in its original, unprocessed form.

● tag: Contains additional tags or labels associated with the data.

● device: Specifies the device used to collect the data, in this case, a "raspberry pi".

● sensors: Lists the types of sensors used, matching the data.json file's "sensors_type"
field.

● AQI: Indicates whether the Air Quality Index (AQI) is available, set to true.

An example of the meta-data.json is presented below:

1. {

2. "descriptor": {

3. "uuid": "uth-123123-lkasjd82-askjd91230asd",

4. "obj-class": "IoT",

5. "format": {

6. "type": "json",

7. "resolution": "100",

8. "output": "json"

9. },

10. "access": "default",

11. "dataset-type": "air-quality",

12. "created": "1674574406.7829435"

13. },

14. "spatial": {

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 60 | 65

15. "bbox": "POLYGON ((16.0295831170816712 41.9183734508349062, 16.02
95831170816712 41.8832522880823319, 16.0872243646491313 41.8832522880
823319, 16.0872243646491313 41.9183734508349062, 16.0295831170816712
41.9183734508349062))",

16. "coordinates": [

17. {

18. "lat": 41.918373450834906,

19. "lon": 16.02958311708167

20. },

21. {

22. "lat": 41.88325228808233,

23. "lon": 16.02958311708167

24. },

25. {

26. "lat": 41.88325228808233,

27. "lon": 16.08722436464913

28. },

29. {

30. "lat": 41.918373450834906,

31. "lon": 16.08722436464913

32. }

33.],

34. "pilot": "greek"

35. },

36. "temporal": {

37. "datetime": "latest",

38. "daterange": "from:to"

39. },

40. "lineage": {

41. "source": "[]",

42. "processing": "raw"

43. },

44. "tag": {

45. "device": "raspberry pi",

46. "sensors": [

47. "PM1.0",

48. "PM2.5",

49. "PM10.0",

50. "sulfur dioxide",

51. "carbon monoxide",

52. "nitrogen dioxide",

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 61 | 65

53. "ozone"

54.],

55. "AQI": true

56. }

57. }

7.2.3. Python code
The following Python code performs a POST request to a specified URL
(http://192.168.168.4:9004/) with attached files as multipart form data. The code
demonstrates how to send a POST request with files attached and retrieves and prints
information from the response, including the status code and the parsed JSON content.

1. import requests

2. import json

3. headers = {

4. # 'Content-Type': 'multipart/form-data',

5. }

6.

7. files = {

8. 'data': open('data.json', 'rb'),

9. 'metadata': open('metadata.json', 'rb'),

10. }

11.

12. response = requests.post('http://192.168.168.4:9004/',
headers=headers, files=files)

13.

14. print(response.status_code)

15. print(response.json())

● headers: A dictionary variable that may contain additional headers to be sent with the
request. In this case, no additional headers are set as the client can set it and add the
boundary value.

● files: A dictionary variable containing the files to be attached to the request. It
includes two files, 'data.json' and 'metadata.json', opened in read-binary mode ('rb').

● response: A variable that stores the response obtained from sending the POST
request. The requests.post() function is used to perform the request, passing the URL,
headers, and files as parameters.

● print(response.status_code): Prints the HTTP status code received in the response. In
this case, 200 is printed.

● print(response.json()): Prints the response content parsed as JSON.

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 62 | 65

7.2.4. Data and metadata ingestion to the SAL
Figure 31 and Figure 32 show evidence of receiving both metadata and data successfully by
the SAL.

Figure 35: Screenshot shows that the metadata is successfully received by the SAL

Figure 36: Screenshot shows that the data is successfully received by the SAL

In Figure 33, a query is depicted, directed towards the SAL, utilizing certain fields from the
'meta-data.json' file. The query's objective is to find records within the SAL that correspond

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 63 | 65

to the query parameters. The results of the query display a list of matching records in the SAL.
In this particular instance, a single match is found, identified by metadata containing the UUID
'uth-123123-lkasjd82-askjd91230asd'.

Figure 37: Submit a query for the Query interface and receives a result proved that the data is stored in the SAL

7.3. Fire Spread Model from EXUS
EXUS’s Fire Spread Model service (FSM) will be deployed and run in SILVANUS cloud. Its
integration with the rest of SILVANUS’ components will take place through the SAL and the
RabbitMQ broker. SAL with be both the data ingestion and data output node FSM. This means
that on the one hand, all required input (e.g. metadata, area slope, spreading barriers etc.)
will be fetched from the SAL by utilizing its exposed REST endpoints. On the other hand, FSM’s
output will be also stored in SAL, again through REST requests.

FSM also uses RabbitMQ broker for the notifications. Specifically, it follows the claim-check
pattern described in D8.1 and Section 2.2.3.2, as the pipeline decided by the consortium,
mainly for the exchange of large-size data files, which is the case for the FSM input/output
data. During the data ingestion, FSM listens to dedicated RabbitMQ queues for changes in the
data files within the SAL, and upon such notification, it fetches the corresponding data through
the process described above. During the data output, upon FSM storing it in the SAL, it
publishes the required notifications to dedicating queues for the three SILVANUS components
that consume FSM’s output know that there is a new output and where to find it.

The progress so far regarding the integration includes the definition of the interfaces (data
format, pipelining process, exchange triggering mechanism etc.) among the FSM and the
components that interconnects with, within SILVANUS cloud, as well as the partial
implementation and testing of these interfaces. The partial implementation includes the data
ingestion part, that is the development of the RabbitMQ subscriber listening to the
notifications and the fetching of the data itself from the SAL. Next steps include the

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 64 | 65

implementation of data output, i.e. making a POST request to SAL and publishing the action
to the dedicated queues in RabbitMQ.

An illustrative example showcasing the integration between the SAL and FSM is depicted in
the following figures. Figure 35portrays essential details, including the filename (e.g.,
"3f957f22-2085-4c3a-9825-2b11b59c82c5") and metadata, pertaining to the ingested data
from the Gargano pilot. Moving on to Figure 36(a), it exhibits a notification message
transmitted via the RabbitMQ message bus. Notably, this message incorporates relevant
information, specifically under the "ccp_info" field, to facilitate the retrieval of the ingested
data. Lastly, Figure 36(b) demonstrates the visualized data received during the testing phase
of data ingestion from the SAL into the FSM.

Figure 38: An example of ingested data to the SAL

(a)

SILVANUS D5.1 Demonstration of big-data framework for situation
awareness on fire danger index

P a g e 65 | 65

(b)

Figure 39. (a) Logs of successful notification receival by RabbitMQ subscriber and (b) visualized data received
during the testing of data ingestion from the SAL into the FSM

8. Conclusion

The deliverable has summarised the overall contribution of WP5 activities towards enriching
the operational capabilities of SILVANUS project. The demonstrations of the different
algorithms and scientific development has been successfully presented during the technical
meeting and the feedback from external experts have been gathered.

The activities of WP5 will continue until the end of the project duration and thus, the activities
reported in the deliverable will continue to mature with the availability of new datasets and
improvements to the algorithms. Subsequent research results will be presented in the next
deliverable.

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Executive Summary
	1. Introduction
	2. SILVANUS Big Data Framework
	2.1. Data sources integration
	2.2. Storage Abstraction Layer
	2.2.1. Object store
	2.2.2. Data and metadata ingestion
	2.2.3. Data retrieval
	2.2.3.1. Message queue
	2.2.3.2. Claim Check Pattern
	2.2.3.3. Metadata index query

	2.3. ML lifecycle management
	2.3.1. Introduction: what ML lifecycle
	2.3.2. Principal ML lifecycle management frameworks
	2.3.3. Kubeflow cloud environment

	2.4. System cloud-native readiness

	3. Data-driven approaches for fire detection
	3.1. ML Approaches
	3.1.1. Fire and smoke detection using Deep-learning
	3.1.2. Fire and smoke detection using Statistical machine learning

	4. Data-driven approaches for fire spread
	4.1. ML Approaches
	4.2. ML Training and Validation
	4.3. ML Evaluation and Results
	5.1 ML Approaches

	5. Data-driven approaches for fire danger risk prediction
	5.1. ML Approaches
	5.2. ML Training and Validation
	5.3. ML Evaluation and Results
	5.4. Next Steps
	5.5. References

	6. Fire and smoke dataset
	6.1.1. Structure of the dataset:
	6.1.2. Ultralytics Hub proof of concept

	7. Integration within SILVANUS Platform [DELL]
	7.1. Fire and smoke detection from Atos
	7.2. Health KPIs for response teams and citizens from UTH
	7.2.1. Air quality data
	7.2.2. Air quality metadata
	7.2.3. Python code
	7.2.4. Data and metadata ingestion to the SAL

	7.3. Fire Spread Model from EXUS

	8. Conclusion

